ISAGRAF

Version 3.5

USER'S GUIDE

ICS Triplex ISaGRAF Inc.

Information in this document is subject to change without notice and does not represent a
commitment on the part of ICS Triplex ISaGRAF Inc. The software, which includes information
contained in any databases, described in this document is furnished under a license
agreement or nondisclosure agreement and may be used or copied only in accordance with
the terms of that agreement. It is against the law to copy the software except as specifically
allowed in the license or nondisclosure agreement. No part of this manual may be reproduced
in any form or by any means, electronic or mechanical, including photocopying and recording,
for any purpose without the express written permission of ICS Triplex ISaGRAF Inc.

© 1994 - 2006 ICS Triplex ISaGRAF Inc. All rights reserved.
Published in Canada by ICS Triplex ISaGRAF Inc.

ISaGRAF is a registered trademark of ICS Triplex ISaGRAF Inc.

MS-DOS is a registered trademark of Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation.

Windows NT is a registered trademark of Microsoft Corporation.

0S-9 and ULTRA-C are registered trademarks of Microware Corporation.
VxWorks and Tornado are registered trademarks of Wind River Systems, Inc.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

Table of contents

A. USER'S GUIDEccooiiiiie e A-10
Y R © T 1 4] Vo IS = (=" S A-11
ALl Instaling ISAGRAF ...t A-11
N 0 I o= 31 o A-13
A.13 Using on-lin€information..........ccoevevererenienenenieieseseee e A-17
Al4d A samPleappliCalion. ... A-17
A2 Managing PrOjECES.....cocviieiierireeeeiesteste et se e ae e te st e e eaesnees A-22
A.21 Creating and working With projects.........ccccoverenenienieienesenee A-22
A.2.2 Working with several groups of projects........cccceevverivvieececceeseeneens A-24
A2.3 OPLIONS. .ottt e e e A-24
N S o o) PSR A-25
A3 Managing ProgramS.cccceeereereeieereeseseesresseseeseessessessessessessesssessenses A-26
A.31 Thecomponents Of aProjeCt........cocviririereriirieeie e A-26
A.3.2 Working With programs.........ccccceeeveniesesesieeseese e A-28
A.3.3 Running the code generation toOoIS.........c.coveeerereienenece s A-31
A34 Other ISAGRAF tOO0IS......ciiiieiririeere s A-32
A.35 Adding commandsto the TOOIS MeNU........cccccerererenerieneeiereeiee A-33
A.3.6 Simulating and debugging the application...........ccccceeveveevererennnne A-33
A4 USINGhe SFC @ditOrccoceveiiciiieieeee s A-36
A4l SFClanguage main toPiCS.......ccuiririrerererienesiesie st A-36
A42 Entering @SFC Chart ... A-38
A.43 Working onan existing SFC chart ... A-40
A.44 Enteringthelevel 2 programming........cccccceeeveenieiesesiesieesesenenens A-41
A45 USINgthe SFC gallery ... A-45
A5 Usingthe Flow Chart editorccoevereiirieiere e A-46
AB51 Basicsof the FClangUaE.........cccoveirerieiieneeese e A-46
A52 Entering@aFow Chart ... A-47
A53 Working onan existing Chart.........cccceeeeeeeienesie s s A-50
A54 Entering level 2 programs........ccocoeererenieneneneneie s A-50

ICS Triplex ISaGRAF Inc. iii

A55 Programming level 2 with QUICK LDccooeviririeiininceneeenee A-51

A5.6 Display OPLIONS.......coeruerririeiereeriesie sttt s b e A-52
A6 USiNgthe QUICK LD €itOrcccceriiirerieirerienereeeseseeeseee s A-53
A.6.1 Basicsof theLD [anguageccccvoveererieereiese e A-53
A.6.2 Enteringan LD diagram........cccooererineninieneseneeseneee e A-55
A.6.3 Working onan existing diagram..........c.cccverrenenninenne e A-58
A.6.4 Display OPLIONS......coueruirririeiereerie ettt e b e A-59
ABS5 ON-lINENEIP..ccciie e e A-60
A7 USINGthe FBD/LD €ItOrcccoeirieeeierieesiesieesie s A-61
A.71 Basicsof the FBD/LD languages........coccoereririerernenenene e A-61
A.7.2 Entering an FBD diagramcccceoeiienieineneneseeseseee e A-64
A.7.3 Working on an existing diagram..........ccccceoerinenenenienneese e A-65
AT7.4 Display OPtiONS......cccceiereeeeieresesiese e e et se e s A-67
A.75 Stylesand modification tracking.........ccoeverererererenieneese e A-69
AT.6 ONHNENEIP..c.ii e A-70
A7.7 Printing an FBD diagramcoccoeeererieie e A-71
A.8 Usingthetext @ditor ... A-72
A.8.1 Editing COMMANGS.........ccceceeeeierieresestese e see e se et e e see e A-72
A.8B2 SYNAX COIOMNG ..veueceeriiieiesie ettt e A-72
AB.3 OPLIONS. ..ttt e e e A-73
A9 Moreabout program editOrsS......ccccooeveveeerieeieesesese s A-74
A9.1 Caling other ISSGRAF tOOIS.......coceiiiiee e A-74
A.9.2 Parameters of the programcccccceveeeececieeiesese e A-74
A.9.3 Other commands of the "Fil€" MeNnU........ccccoovvvreiniinennesecseee A-75
A.9.4 Updating the program diaryccceeeeneneieneneieseneee e A-76
A.95 Selecting avariable from dictionarycccooveveienenienienenene A-76
A.9.6 The OULPUL WINCOWcccevueeeeeeeiere e A-77
A.10 Usingthedictionary editorccooeeiinninieineneeeeseese s A-79
A.10.1 Thedictionary Main WindOW...........ccoererenenenieneneneneese e A-81
A.10.2 Managing Variales.........ccoereinereiseee e A-81
A.10.3 Description Of ODJECEScoeeiiiiiere e e A-83
A.10.4 QUICK declarationcccceeereiesieseeeeeereese e e A-84
A.10.5 Modbus SCADA addreSsing Mapcccoeereeerierieieneneee e A-85
A.10.6 Exchanging information with other applications..............c.cccceuen.e.. A-86

iv ICS Triplex ISaGRAF Inc.

A.11 Using [/O connection editorccocoeeveeeeiieniine e A-90

A111 Defining /O DOArdScccooeiiiriciieneeesesee e A-91
A.11.2 Setting board Parameters..........coeveeererreeie e A-92
A.11.3 Connecting I/O channels..........ccccvvrereeveiie s A-92
A.11.4 Directly represented variables..........ccooeoviirennieneinineceeeeee A-92
ALLS5 NUMBEING .o e A-93
A.11.6 Setting individual Protections............ccceeeeeeeererene s A-94
A.12 Creating conversion tables..........ccoeovireininieneeee s A-95
A121 Main COMMANGS......civeirerrerererreeresree e A-95
A.12.2 Entering pointS of atable........cccooeveiiinriinerneeree e A-95
A.12.3 RUIES AN lIMITS...cciiiiiieiieieie e A-96
A.13 Usingthe code generator........cccoieieiesieieeerieereeseeseese s sreeeeeesae e A-97
A.13. 1 Main COMMANDS.....coiiriirririeenre st A-97
A.13.2 CompPIler OPtiONS.......ccceeeeeeierere e A-98
A.13.3 Producing C SOUICE COUE.........curirieiriiieirienieesie e A-100
A.13.4 Viewing infOrmMationcccoeoeereneieneneeneeese e A-100
A.135 DefiNiNG rESOUICESocverueeieieriesie ettt e A-101
A 14 CrosSREFEIENCES.....c.coiireeeeierere et neenee e e A-106
A.15 Usingthegraphic debuggerccoeorireinineeneneesereeese e A-108
A.15.1 The debugger WiNAOW........ccccevueveieiisineeeeee e ee e s A-108
A.15.2 Controlling the appliCation............ccverrierennienerese e A-109
A.L5.3 OPLIONS....cuiitiieiiriiieierieee ettt A-111
A.15.4 "WIItE" COMMENGScoveerierreerienreesiesie e A-111
A.155 Display thelock state and device value..........cccccevvveveveecerennnnnnn, A-113
A.15.6 ON-line MOdifiCationcccoecvvvreneeieeree e A-114
A.15.7 DDE €XChanges.......cccooirieiriiieiriiere et A-117
A.16 Spying Listsof variables........cccooviviiiiiiceccicse e A-119
A.17 Debugging ST and [L programs........cccceeeeeerereseseesesiesseeseessesesnens A-121
A.18 Debugging with SpotLightcccooviiiiiiiiceerer e A-122
A.18.1 Building the graphic layout...........cccooueiininiiinereeeeee e A-122
A.18.2 ThelistlayOUL........ccceeieieiese et A-124
A.18.3 Defining theitem style.......cccooiiiriiiiiee e A-124

ICS Triplex ISaGRAF Inc. v

A.184 Commandsof the"Fil€" MeNU........ccccoeiiceieeieiee e A-125

A.185 Notefor ISSGRAF V3.2 USEIS....cccoeirrieienieeresieieesiere e A-126
A.19 Uploading appliCations...........ccvereeenineinieneeseneee e A-127
A.19.1 Uploading @PrOjECL......cccvveeeeieeriesesiesteseeee e sees e see e e eaeseeeas A-127
A.19.2 CommuniCation SEHINGS.......cocureeririeeririere e A-127
A.19.3 Preparing aproject for upload...........ccooevriienninenneneecee A-127
A.19.4 How zipped source are stored inthetargetccoceveeveeienenennn, A-128
A.19.5 Memory requirementson thetargetccccvevveveececceeveesenesenn, A-129
A.19.6 About uploaded ProjECL........ccccciririeirerieirese e A-129
A.19.7 Compatibility ISSUES........ccevuirieiriiere e A-129
A.20 Usingthe DiagnoSiStOO0lccccoivieiineieeieieese e seesese s see e e A-130
A.21 Usingthe | SASGRAF SIMUIAtOrcccccoeeveeierirese e A-131
A.21.1 Linkswith the debugger.........ccooiiiiiiniiiiee e, A-131
A.21.2 /O SIMUIBLTION.....ccieereeirerieiee e A-131
A.21.3 Library COMPONENESccvirueeririeirenie st A-132
A 214 OPLIONS....ciitiietiriiieierieiee sttt b bbb e A-132
A.21.5 Saving and restoring iNPUL StALES............coerereererereeiereee e A-133
A.21.6 ThecyCleprofiler ... e A-133
A.217 SIMUIELON SCHIPLS....eiveieriireeirierieerie et A-134
A.22 UsingtheLibrary Managerccccooeerieeienenene e A-142
A.22.1 Managing library €lements.........cccocveirinenninenneeese e A-142
A.22.2 1/O CONFIQUIBLTION....c.uiieireerieeiesie st A-145
A.22.3 1/O complex eqUIPMENt........ccocviereeeeeeceese e A-146
YA S V(@ N oo [o ST A-146
A.22.5 Functions and blockswritten in IEC languages...........c.cceeerveneee A-148
A.22.6 "C" Functionsand function blOCKS..........cccecurererinineieninccneee A-149
A.22.7 ConVersion fUNCLIONScourerveiinenieeneneees e A-150
A.23 Usingthe Archive Utility ... A-151
A.23.1 Callingthearchive manager.........cccoeovineinineinene e A-151
A.23.2 OPLIONS....coeitiieiiriiieieriee ettt A-152
A.23.3 Backup @nd reSOre.......ccereeeeieriene ettt A-152
A.234 ArChiVEFIlES...ooiceiiie e A-152

Vi ICS Triplex ISaGRAF Inc.

A.24 Printing a complete dOCUMENTccceriiiiiireiine e A-154

A.24.1 Customising the table of CONtENtS.........cccoceveiirereiineieereeee A-154
A.24.2 OPLIONS....eiiiiiiieeese ettt b et e e e e nas A-155
A.25 PassWOrd ProteCLioNccoeeerenieeneeee e A-157
A.26 Advanced programming teChNiqUES........c.ccoerirenincinecees A-160
A.26.1 Moreabout ISSGRAF LOOISccvveeeirerieeeseerereeres e A-160
A.26.2 Locked I/Osand Virtual [/OS.........ccooveiveeeienenine e A-160
A.26.3 PC-PLCIINK validation.........coceerumienirerieieninieieresiee e A-163
A.26.4 |SaGRAF AIrECLOMIES......coviuiiieieririeiees et A-163
A.26.5 Application SymbBOolS........ccccocieiiniiiicicie e A-165
A.26.6 Limitsof ISSGRAF"LARGE" (WDL) workbench.............c........ A-169
B. LANGUAGE REFERENCE.........ccciiiiiiiiieeeee, B-172
B.1 Project arChit@CtUre.....cccieieieie e B-173
B.1.1 PrOgramSooooiieee et B-173
B.1.2 Cyclicand sequential operations...........ccocevereresesieeeeieeseeseeseenens B-173
B.1.3 Child SFC and FC programs.ccoceeerereererereeesenesesieneseseenens B-174
B.1.4 Functions and SUD-Programs...........cccecerererenienenenieneseseeneseseenens B-174
B.1.5 FUNCHON BIOCKS.......ccveieiiiecieie e B-175
B.1.6 DesCription [aNQUBGE.ccevveriereeeeeieere e e se et see e e e B-176
B.1.7 EXECULION FUIES. ..ottt B-177
B.2 COMMON ODJECES ..o e B-178
B.2.1 BBSICIYPES ciieieiiiriee ettt b e B-178
B.2.2 CONStaNt EXPrESSIONS.....ccueiviierierieeiireeie et st see e e eseesee e e e e B-178
B.2.3 Va@hleS ..o s B-180
B.24 (01011001 1SR B-183
B.2.5 Defined WOIAS.......cco i B-184
B.3 SFCanNQUAGE.....ccooiierecieeeeee ettt nen B-185
B.3.1 SFCchart MainfOrmatcocovererireiineneeseseee e B-185
B.3.2 SFC basiC COMPONENES.......ccccevveieeerereeeeieeseesesee e s eaeseeeas B-185
B.3.3 Divergences and CONVENJENCEScuvireerierieerienieesieseeseseeseenes B-187
B.34 MBCIO SEEPS ...t B-189
B.3.5 Actionswithin the Steps.........ccceoiiiiiii e B-190
B.3.6 Conditions attached tO tranSitioNSccoeorvereierenreereseerereeens B-195

ICS Triplex ISaGRAF Inc. vii

B.3.7 SFC AYNAMIC FUIES......c.eiviiceirieieeerieeeie et B-197

B.3.8 SFC program hierarchycoccoeeererieeieenene e B-198
B4 Flow Chart language.........ccceeriiririiieerieeeeeseee e B-199
B.4.1 FC COMPONENLS......ccueieeieieeesieesteeeeesee e seesreesaeeeesneesneesseeneeens B-199
B.4.2 FC cOMPIEX SITUCLUIES.......c.eevireeiirieriecsiereecsieseeie e B-202
B.4.3 FC dynamic BEhaVIOrc.ccovieiiireiner s B-203
B.44 FC CheCKING ...ccoeiiiiieeee e e B-203
B.5 FBD [@NQUAGE......cceiriieeiirieieierieeeie ettt B-204
B.5.1 FBD diagram main formatccceeoeeeeievesienn s eeeseeseene s B-204
B.5.2 RETURN SALEMENL........ooiiieiiiieee e B-205
B.5:3 Jumpsand labelS ... B-205
B.5.4 B00I€aN NEGALION.....cccoiiiieieiriieieeeeee e e B-206
B.5.5 Cdlingfunction or function blocksfromthe FBD B-206
B.6 LD lANQUAGE ... ittt B-208
B.6.1 Power rails and connection liNES..........coovvvriereeeeeeerere s B-208
B.6.2 MUILIPl@ CONNECLION ...t B-209
B.6.3 Basic LD contacts and COIlS........cocoeereriiiiieniie e B-210
B.6.4 RETURN SIateMENt.......ccooiirieiiireee et B-215
B.6.5 Jumpsand labelS ..o B-216
B.6.6 BIOCKS TN LD ...t e B-217
B.6.7 "IN Lin€" BIOCKSIN LD ...oooviiiiiiiceeceee e B-218
B.7 ST IAGNQUAGE......ccieriiriieierieete et B-220
B.7.1 ST MaiN SYNLBX....ccceeeeieiieiiesiese e ereseeeeseesees e et sne e seesaeseenens B-220
B.7.2 Expression and parentheses...........ooevireenineenenecseceesies B-220
B.7.3 Function or function block calls.........cccoooviiiiininineeecee B-221
B.7.4 ST specific BOOI€aN OPErators.........coceeereenienieiienenenieeee e B-222
B.7.5 ST basiC StAEMENLS.......ccoveirereeeee et B-224
B.7.6 Y == 15 T 1 B-229
B.8 IL [QNQUAGEooviieieieiie e e B-235
B.8.1 IL MBIN SYNEBX....ecteiveeeieriereeiesieseeie e bbb e e eresreneas B-235
B.8.2 [L OPEIELOIS. .. .ccteeteeiesiie ettt e e e ee s B-236
B.9 Standard operators, function blocks and functions.........c.cccce.... B-243
B.9.1 Standard OpEratorsS........ccoceveverereeerieeieesiesesese e se e see e see e e B-243
B.9.2 Standard function BIOCKS.........ccvvrieriiereeece e B-263

viii ICS Triplex ISaGRAF Inc.

B.9.3 Standard FUNCLIONS.........ooiiieiee ettt B-280

C. TARGET USER'S GUIDEcooiiiiiiiiiiiiieeeee C-322
LS N g 1 1 o o [[f o o I C-323
LT 0 1 - - o o S C-324
C.3 Getting started with | SAGRAF DOStargetccocvevererenencnienens C-325
C31 Running ISAGRAF: ISA.EXE......ccccoiiiee e C-325
C.32 SPECITiCFEAIUIES. ..o C-326
C.4 Getting started with ISSGRAF OS9targetccooevererceeieeieneennn, C-329
c41 Running the ISaGRAF single task: iSa........ccveevineerenecniene, C-329
c4.z2 Running the ISSGRAF multitasks: isaker, isatst, isanet................ C-330
C.4.3 SPECIfICTEAUIES....ccvceeece e e C-334
C.5 Getting started with | SAGRAF VxXWorkstargetccooeveevneenee C-338
C51 Thesystem resource manager: iSASSI.0cevereeereereeerueneeesseneens C-338
Cb5.2 Common featuresto isa.o, isakerse.o and isakeret.o..........cceuee. C-338
C53 Running the ISSGRAF single task: iSa.0.......ccuoerererieeiesienicienene C-339
C.5.4 Running the ISSGRAF multitasks: isakerse.o and isakeret.o........ C-341
C55 SPeCifiC FEAIUINES. ..o C-345
C.6 Getting started with ISSGRAF NT targetccocevevereriecieieneee, C-349
C.6.1 RUNNING ISAGRAFcioiiiiirrtts ettt C-349
C.6.2 General information 0N OPLiONS.........coceevereerierierieniereeie e C-349
C.6.3 SPECIfICTEAUIES....ccveceeeee e C-353
C.64 USEr INEEITACEiiveeeeeeee st nnen C-357
C.7 " C" Programming......cccceceecererenesesesieeeeseesseseesaessesessessessssseessesees C-363
C.7.1 OVEIVIBW ..ottt st st C-363
C.7.2 "C" ConVErsion fUNCLIONS..........couruieeermineeierieeeeseeeeeseeeeesneeens C-364
C.7.3 "C" FUNCHONS.....ceeiiirieiererieee e C-369
C74 "C" FUNCTION BLOCKS.......ocoi et C-376
C.7.5 Compiling and linking teChNiQUES............cccvireerineiriecseees C-391
C.8 MOUBUSINK ..ot C-398
C8.1 MODBUS network and protocolccccceveierinenienienieeneienns C-398
C8.2 | SAaGRAF implementation.........ccccueceeveerereriesese e C-399

ICS Triplex ISaGRAF Inc. ix

C.9 Power fail management...........cccooe..e.
C.91 BaSICS.ccnmriririnenerieeerinie e
C9.2 Application variables backup.........
C9.3 Program state backup..........ccccoe.....

C.10 Appendix: Error list and description
D. GLOSSARY ..o,

E. GENERAL INDEXccccceunn

A. User's Guide

ICS Triplex ISaGRAF Inc.

User's Guide

A.1 Getting started

This chapter covers the installation of the ISaGRAF workbench. It also includes a
short example of an 1ISaGRAF application, giving the user a brief outline of its main
features and enabling the immediate use of ISaGRAF.

A.1.1 Installing ISaGRAF

This chapter covers the installation of the ISaGRAF Workbench and how to set up
the computer for application development.

= Hardware and software requirements

The 1SaGRAF Workbench can be installed on any computer meeting the minimum
qualifications for Windows Version 3.1. However, the following hardware is
recommended for application development:

¢ A personal computer using an 80486 or higher microprocessor
(Pentium processor recommended)

* 8 megabytes of conventional and extended memory
(16 megabytes recommended)

e One 3.5-inch (1.44 megabyte) disk drive

* One hard disk with at least 20 megabytes of available space

* A graphic VGA or SVGA adapter and compatible monitor

e A mouse (required for graphic development tools)

e A parallel LPT1 port (required for protection key)

Before installing the ISaGRAF workbench, the following software should already be
included on the system:

¢ Windows Version 3.1 running in 386 enhanced mode
e Windows 95
e Windows NT Version 3.51 or 4.00

= Using the installation program

The 1SaGRAF workbench is installed by using INSTALL, the 1ISaGRAF installation
program. This program copies the ISaGRAF software from the ISaGRAF CD-ROM
or disks onto the user's hard disk. INSTALL also adds the group "ISaGRAF" to the
Program Manager window and creates an initialisation file named "ISA.ini" in the
installed EXE sub-directory.

INSTALL is a Windows program, which must be run from the Windows Program
Manager or the Run command of the Start menu of Windows 95. To install
1ISaGRAF, the following steps must be performed:

e Insert ISaGRAF CD-ROM or floppy disk #1 into the appropriate drives
e From the Program Manager or the Start menu, run "SETUP.EXE" on the root
folder of the CD-ROM, or "ANINSTALL.EXE" in the case of floppy disks.

ICS Triplex ISaGRAF Inc. A-11

User's Guide

¢ Follow the on-line instructions to complete the installation. It is recommended that
the 1SaGRAF Workbench be installed on a new directory to avoid confusing files
with files from other ISaGRAF versions.

INSTALL will ask whether the following components are required:

* ISaGRAF executable programs
* On-line information and help files
¢ |ISaGRAF standard libraries

* ISaGRAF sample applications

It is highly recommended that when installing 1SaGRAF for the first time all
components be included. Further components can, however, be added at a later
date by re-installing the ISaGRAF Workbench.

The default name for the 1SaGRAF main directory is "ISAWIN". This allows
ISaGRAF for Windows to be easily installed on the same disk as a version of
ISaGRAF for MS-DOS. Refer to the "ISaGRAF directories" section in the "Advanced
techniques" chapter for more about 1SaGRAF disk architecture. Once all the
ISaGRAF files have been copied, the following group is added to your Program
Manager Window:

= M=l E3

File Edit “iew Help
4 &

S B & 2

Book Diagnosis Libraries Projects Report Read Me

|E object(s] |212¢B .

The following are the main ISaGRAF icons:

Book:ocveeuiee On-line information about ISaGRAF
Diagnosis: Diagnosis tool for end user

Libraries: Library management

Projects: .. Project management

Report:....cccoeeene Standard Bug report form

Read Me.:............ Information about the ISaGRAF new version

In case you encounter a problem, use the standard bug report form. Open
it, fill the items requested and use the File/Save As menu command to save it with a
given file name. Then send this file to ICS Triplex ISaGRAF, using Fax or e-mail.

Updating system files

Once installation is complete, the CONFIG.SYS file needs to be updated before
restarting the computer. The 1SaGRAF directory pathname does not have to be
inserted in the PATH variable.

ISaGRAF does not use any MS-DOS environment variable. However, the following
statements can be added to the CONFIG.SYS file:

ICS Triplex ISaGRAF Inc.

User's Guide

files=20
buffers=20

The ISaGRAF Workbench uses a serial port to communicate with the 1SaGRAF
target PLC. The default serial port for ISAGRAF is COML1. If the mouse also uses a
serial port, choose COM2 for the mouse, so the default COM1 specification will be
valid for any new ISaGRAF applications.

After updating the CONFIG.SYS file, it is necessary to restart the computer for the
changes to take effect.

= Important for Windows NT user:
When the Workbench is used under Windows NT 3.51 or 4.00, the following line has
to be inserted in [WS001] section of ISA.ini file in ISAWIN\EXE directory:
[WS001]
NT=1
Isa=C:\ISAWIN
IsaExe=C:\ISAWIN\EXE
IsaApl=C:\ISAWIN\APL1
IsaTmp=C:\ISAWIN\TMP
This is absolutely required for RS communication.

A.1.2 Licensing

The version of ISaGRAF you just installed allows you to build control applications.
You can use 1ISaGRAF for a trial period of 30 days before requiring licensing. When
not licensed, you cannot export IEC programs to a library, export variables,
download Workbench project source code to a target, or upload source code from a
target. To have a fully operational version of the product, you need to license it.

When using third-party libraries, you need to enable their use by licensing them. You
initiate the licensing of these libraries from within the Library Manager when
restoring the library archive.

You can license 1ISaGRAF using either a hardware or software key. When using a
hardware key, a dongle which you place on the parallel or USB port of your
computer is delivered pre-programmed with the selected feature set. When using a
software key, you need to obtain an authorized license. You license products in the
License Manager.

The hardware key can be connected to any parallel port on the computer. If the
computer has more than one parallel port, it is preferable to connect the key and
printer to different ports. For some computer/printer configurations, the hardware key
may not be recognized when its output is connected to an off-line printer. In this
case, either disconnect the printer or start it in the on-line state, then restart the
ISaGRAF Workbench.

Note: When using a hardware key on Windows NT systems, you must install the
Sentinel driver in order for the key to be seen. You install the driver by

ICS Triplex ISaGRAF Inc. A-13

User's Guide

double-clicking the Setup.exe file located at the root of the ISaGRAF CD-
ROM in the Sentinel folder, then following the on-screen instructions.

ISaGRAF is available in two feature sets:

. Limited number of 1/Os, having a limited number of I/Os ranging between 1 and
4095
. Large, having an unlimited number of 1/Os

Both feature sets include the use of the ST (Structured Text) and IL (Instruction List)
programming languages. However, to enable the use of any other of the available
languages in the Workbench, you need to specify these:

SFC (Sequential Function Chart)
FC (Flow Chart)

FBD (Function Block Diagram)
LD (Ladder Diagram)

Although licenses are only valid on a single computer, you can transfer them from
one computer to another.

To access the License Manager

» From the Start menu of Windows, choose Programs, then ISaGRAF 3.5, then
Licensing.

A.1.2.1 Adding Licensing

You can obtain authorized licenses for ISaGRAF.
To obtain authorized licenses for ISaGRAF

You need only one set of user codes and registration keys when licensing ISaGRAF.

1. On the Add Licensing tab, from the list of available components, select
ISaGRAF.

2. Click —> to move your selection to the list of Selected Components.

You will be prompted to select a feature set: Limited number of I/Os, or Large. For

the limited number of 1/Os set, you need to indicate a specific number of 1/Os
ranging from 1 to 4095.

A Setup Code, User Code 1, and User Code 2 appear in their respective fields.

3. Send the licensing information:
a) Click Send.

ICS Triplex ISaGRAF Inc.

User's Guide

A pre-addressed email appears holding the setup code and both user codes
into which you need to include your contact information and purchase order
number. For additional purchases, you need to provide a credit card number.

b) Include all required information then send the email.

The original setup code and user codes as four registration keys will be
returned via e-mail.

Upon reception, make sure the setup and user codes are the same as those in
the License Manager window, then copy and paste the registration keys in their
respective fields.

Click Proceed.

If licensing is successful, ISaGRAF appears greyed in the Selected Components list.

6.

When licensing is complete, stop then restart ISaGRAF.

A.1.2.2 Transferring Licensing

You can transfer licensing from one computer to another.

To transfer a license to a new computer

Transferring a license from one computer to another requires creating a license
transfer disk, then removing the license from the currently licensed computer and
copying it to this transfer disk before it can be installed on the new computer. The
floppy disk must be formatted and blank.

1.

From the new computer, prepare the license transfer disk:
a) Install ISaGRAF.
b) Insert a floppy disk in the computer’s drive.

c) From the Start menu of Windows, choose Programs, then 1ISaGRAF 3.5,
then Licensing.

d) On the Transfer License tab, select the drive holding the floppy disk, then
click Create Transfer Disk.

The license transfer disk is created.

e) Remove the license transfer disk from the new computer's drive.

Transfer the license from the currently licensed computer to the license transfer
disk:

a) Inthe currently licensed computer’s drive, insert the license transfer disk.

ICS Triplex ISaGRAF Inc. A-15

User's Guide

b) From the Start menu of Windows, choose Programs, then ISaGRAF 3.5,
then Licensing.

c) On the Transfer License tab, select the drive holding the transfer disk,
then click Transfer Licenses to Disk.

The license is removed from the computer and copied to the license transfer
disk.
d) Remove the license transfer disk from the computer’s drive.

3. Install the license on the new computer:

a) In the new computer’s drive, insert the license transfer disk holding the
license.

b) From the Start menu of Windows, choose Programs, then ISaGRAF 3.5,
then Licensing.

c) On the Transfer Licensing tab, select the drive holding the transfer disk,
then click Complete Transfer.

The license is transferred to the new computer and ISaGRAF 3.5 is activated.
A.1.2.3 Removing Licensing

You can remove authorized licenses from a computer.

To remove authorized licenses

1. From the Start menu of Windows, choose Programs, then ISaGRAF 3.5, then
License Manager.

2. On the Remove Licensing tab, from the list of licensed components, select the
components for which you want to remove licensing.

3. Click —> to move the components to the list of Selected Components.

A Setup Code, as well as a User Code 1 and User Code 2 appear in their respective
fields.

4. Send the licensing information:
a) Click Send.

A pre-addressed email appears holding the setup code and both user codes
and into which you need to include your contact information and order number.

b) Include all required information then send the email.

A User Code, as well as four registration keys will be returned via e-mail.

A-16 ICS Triplex ISaGRAF Inc.

User's Guide

5. Upon reception, enter the user code and both registration keys into their
respective fields, then click Proceed.

A confirmation code appears in the Confirmation Code field.

6. Reply to the email including the Confirmation Code as well as your name,
address, and telephone number.

A.1.3 Using on-line information

On-line information is installed with the 1SaGRAF workbench, for the following
topics:

» |ISaGRAF languages reference

e Complete user's guide (for any ISaGRAF tool)

¢ Technical note for elements in the libraries

From any ISaGRAF window, select the choices of the "Help" menu to display online
information.

A.1.4 A sample application

This chapter explains, step by step, all the basic operations required to make,
design, generate and test a short but complete multi-language application.

Below are the complete specifications of this application, mixing LD and SFC
representations:

Boolean variables:
IX0_1, IX0_2: input variables for process command
RunCmd: internal "run/stop" command
QX1 1: output variable: status of the process
Program Command: Cyclic begin section - LD language
Evaluates the internal "run/stop" command
DO 1 DO 2 RunCmd
I || || Q |
Program RunStop: Sequential section - SFC language
Controls the process

ICS Triplex ISaGRAF Inc. A-17

User's Guide

Start

TRUE;

4(* Wait: no special action *) ‘
RunCmd;
3 Hoxat \

2

3]
% NOT(RunCmd);

¥

Running the ISaGRAF workbench

To run the ISaGRAF Workbench, run the "Projects” command, in the "ISaGRAF"
group, from the Start menu of Windows.

Creating the project

Create the project (called "RunStop") using the "New" command of the "File" menu
or the New button. In the open dialog box:

Enter project name: "RunStop"

Select I/O configuration: "Sim_Boo"

Press the "OK" button.

The project has now been created.

Opening the project
The programs of the project are defined by opening the ISaGRAF program

management window. Use the "Open" command of the Project management
window, or double click the mouse on the name of the project or use the Edit button.

Creating the programs

The Program Management window is now open and empty (no programs defined).
The first program is created using the "New" command of the "File" menu or the
"New" button. In the open dialog box:

Enter the name of the program: "Command".

Select the "Quick LD" language.

Select the "Beginning of cycle" section.

Press the "OK" button to create the program.

The same operation must be repeated for the second program:
Use the "New" command of the "File" menu, or the "New" button. In the open dialog
box:

Enter the name of the program: "RunStop".

Select the "SFC" language.

Select the "Sequential” section.

Press the "OK" button to create the program.

The programs are now created. They appear in the Program Management window.

A-18

ICS Triplex ISaGRAF Inc.

User's Guide

Declaring the variables

Before entering the programs, the internal variable to be used in the programming
must be declared. This is done using the command "Dictionary" of the "File" menu or
the Dictionary button. I/O variables are automatically declared when the project is
created.

|§| The dictionary window is how opened. With the menu "File", the Sub-menu
"Other", the Sub-menu "Global variables" and then the command "Booleans", select
the "Global" Boolean dictionary. Buttons Global objects and Boolean can be used for
the same effect.

The "New" command of the "Edit" menu is used to create new Boolean
variables. You can also use the Insert objects button. In the open dialog box, enter
the description of the internal variable:

name: RunCmd
comment: Run/Stop command: internal
attribute: Select the "Internal” attribute

Press the "Store" button: the variable is created.

Press the "Cancel" button to exit the dialog box.
Finally, exit the dictionary editor and save the modifications entered: Menu "File" -
Command "Exit". Click on "YES" to save modifications.

Editing the Quick LD program
To start editing the "Command" LD program, double click on its name in the
Program Management window or use the Edit button.

EE The 1SaGRAF Quick LD Editor window is now open. To increase the
working area, resize the window to use the full screen size.

F2 F3 Press F2 and F3 key:
¢

)
— N O

-« Associate variables to the LD symbols: move the cursor using the
keyboard arrows. Place the cursor on each symbol and press Enter key. The
variable section dialog box is opened.

For the first contact, type in the variable selection box: IX0_1 then Enter.

For the second contact, type in the variable selection box: IX0_2 then
Enter.

For the coil, type in the variable selection box: RunCmd then Enter.

The program is now complete. Here is the result:

DO_1 O 2 RunCmd
| I O |

Exit from the editor, and save the modifications entered: Menu "File" - Command
"Exit". Click on "YES" to save modifications.

Editing the SFC program

To start editing the "RunStop" SFC program, double click on its name in the
Program Management window or use the Edit button.

ICS Triplex ISaGRAF Inc. A-19

User's Guide

EE The SFC Editor window is now open. To increase the working area, resize
the window to use the full screen size:

‘1‘ The initial step already exists and is selected. Press the "Down" keyboard
arrow to select the empty cell after the initial step (0,1)

F4 F3 Press F4 then F3 to insert a step and a transition.

F4 F3 Press F4 then F3 to insert one more step and transition.

F5 Press F5 to insert a jump to a step and select GS2 as the destination of
the jump.

Gl The chart is now complete. Press the "Zoom" button in the toolbar to
increase size of cells and give space to display level 2 instructions. Here is the chart:

) @lu+5+

-« To enter the programming of transition "2", select it using the keyboard
arrows and press "Enter" key. The Level 2 programming window is open. Enter level
2 programming for transition 2:

RunCmd;
~TAB Press "Control + Tab" keys to move focus back to the SFC chart, move
selection on step 3, and press "Enter" key to edit its level 2 text:

QX1_1;

And do the same to enter text of transition 3:

Not (RunCmd);
“F4 Press "Control + F4" keys to close the level 2 window.
The SFC program is now complete. Exit from the editor with Menu "File" and
Command "“Exit", and save the modifications entered clicking on "YES".

Building the application code

Use the "Make" menu and command "Make Application" from the Program
Management window to build the application code or the button in the Toolbar.

When the code generation is complete, a dialog box appears, which asks you to exit
the code generation now or to continue working with it: Press the button "Exit".

Simulation

Use the "Debug" menu and command "Simulate" from the Program Management
window to run the ISaGRAF kernel simulator or the button in the Toolbar.

A-20

ICS Triplex ISaGRAF Inc.

User's Guide

When the Simulator window appears, the application can be tested. In this example,

both inputs 1 and 2 (green buttons) must be pressed to run the process (output red
LED lights).

Close the Debugger window to exit from simulation: Menu "File" - Command "Exit".

ICS Triplex ISaGRAF Inc. A-21

User's Guide

A.2 Managing projects

+

il

i 4

To run the ISaGRAF project management tool, double click the mouse on the
"Projects" icon, in the 1SaGRAF group. The "Project Management" window is then
opened. A project corresponds to one PLC loop run on a target PLC. The upper
window contains the list of the existing projects. The text descriptor of the selected
project is displayed in the lower window.

Resizing windows

Just click on the separator (splitter) between project list and descriptor to resize
corresponding windows. The descriptor window cannot be completely hidden. It
always contains at least one line of text.

Inserting separators

A separator line can be inserted before any project name. This allows grouping
some projects attached to the same application in the list layout. Use the "Edit /
Toggle separator" command to insert or delete a separator before the selected
project.

Moving projects in the list

To move a project in the list, you first have to select (highlight) it. Then click on its
name and drag it to a new location in the list. When dragging the project, a small
arrow on the left margin indicates where it will be placed. You can also use the
"Move" commands of the "Edit" menu to move the selected project line by line. Note
that if a separator is placed before the selected project, it is moved with the project.

A.2.1 Creating and working with projects

The commands of the project manager menu are used to create new projects, edit
them and manage existing projects.

Creating a new project

To create a new project, first enter its name. An empty project is then created, with
no object in it. An I/O configuration can be attached to the new created project. This
I/0 configuration must be defined in library. If a configuration is chosen, ISaGRAF
will automatically set-up the 1/O connection and declare the corresponding 1/0
variables in the new project dictionary. When creating or renaming a project, you
have to conform the following naming rules:

e name cannot exceed 8 characters

o the first character must be a letter

 the following characters can be letters, digits or underscore character

o the project's name is case insensitive

When a project is created, use the "Edit / Set comment text" command to enter the
text to be displayed with the project name in the list.

A-22

ICS Triplex ISaGRAF Inc.

User's Guide

Editing the project descriptor

The "Project / Project descriptor" command is used to edit the project text
descriptor. This document fully identifies the project from the others on the project
list. The project descriptor can also be used to record any remarks during the project
lifetime.

Editing project

The "File / Open" command opens the Program Management window for the
selected project. From this window, all the contents (programs, application
parameters...) of the project, can be managed. It is also possible to double click on a
project name, to edit it.

The history of modifications

"The ISaGRAF system stores any modification relative to a component of a project
in a history file. Each modification is identified in the history by a title, a date and a
time. The history file contains the last 500 modifications. There is one history file for
each project. The history of modifications for the project is the complement of the
"diary" files attached to the programs of the project. The "Project / History"
command allows the user to view or print the history of modifications for the selected
project. The user can select one or more items in the main list, and press the
following buttons:

OK v closes this window

Print sends the contents of the list to the printer

Help displays help about this dialog box

[erase] Selected . removes (deletes) the selected lines from the list
[erase] All clears the complete list

Find ...ooooevieen, finds a pattern in the list

The input box above the "Find" button is used to enter a search pattern. This
function is case insensitive. When the search reaches the bottom of the list, it
continues from the top of the list to the starting position.

Printing a complete document

The "Project / Print" command allows the user to build and print a complete
document about the selected project. This document can group any component
(program, variable, and parameters...) of the selected project. To build a specific
(non-complete) document, the user only has to define its table of contents.

Password protection

The "Project / Set password" command enables the user to define password
protection for tools and data of the selected project. Refer to the "Password
protection” section, at the end of the first part in this manual for further information
about password levels and data protection. Passwords are only relative to the
selected project. They have no influence on other projects and ISaGRAF libraries.

ICS Triplex ISaGRAF Inc. A-23

User's Guide

A.2.2 Working with several groups of projects

An ISaGRAF project corresponds to one directory on the disk, where all the project
files are store. A "Project Group" corresponds to a list of project directories grouped
together under the same root directory. A project group is identified by a name. As
default, ISaGRAF creates two project groups:

"Default"............. on "\ISAWIN\APL": your working area
"Samples".......... on "ISAWIN\SMP": sample applications delivered with ISaGRAF
workbench

The name of the currently selected project group is written in the toolbar, close to the
button used to select a project group:

% Default

You can also run the "File / Select project group" to select an existing group or
create a new one. The following dialog box is open:

Project groups |

| Select I

o projectslizagdisawinimyapl
fizawinismp

Samples o projectsizagsisawinyfapl New group |

Cloze |

Select a group in the list and press "Select" to activate it in the project management
list. You can also double click on its name to select it. Use the "New group"
command to create a new group. This command can be used either to assign a
group name to an existing directory, or to create a new group with a new directory.

Note: No group can be selected or created when other ISaGRAF windows
(program manager, editors...) are open.

A.2.3 Options

The commands of the "Options" menu are used to display or hide the toolbar, select
the character font for text, and set the Project Manager "auto close" mode. The
character font selected is the one used to display the project descriptor, and is also
used by all ISaGRAF text editors.

When the "Keep Project Manager open" option is removed, the Project Manager
window is automatically closed when a project is entered.

A-24

ICS Triplex ISaGRAF Inc.

User's Guide

A.2.4 Tools

The commands of the "Tools" menu are used to run other ISaGRAF applications.
The "Tools / Archive Projects" command runs the 1SaGRAF archive manager to
save or restore projects. The "Tools / Archive Common data" command is used to
save or restore files used by all projects (such as common defined words).

The "Tools / Libraries" command runs the 1SaGRAF library manager in a separate
window.

The "Tools / Import IL program” can be used to import a project described as a
single IL program in a text file, according to PLC Open file exchange format.

ICS Triplex ISaGRAF Inc. A-25

User's Guide

A.3 Managing programs

The Program Management window shows the programs (also called modules or
programming units) of the application and groups into its menus the available
commands, to create the project architecture, run editors, compiler and debugger.
This window is the workbench kernel during the development of an application. The
Program Management window opens when running the "Open" command in the
Project Management window.

A.3.1 The components of a project

The components of a project are called programs. A program is a logical entity that
describes one part of the control execution. Any program in the application can use
global variables (such as I/O variables). Local variables may be used by only one
program. Programs are listed in a hierarchy tree, divided into different logical
sections. The window shows the programs and the links between them. The "Top
level" programs appear on the left side of the hierarchy tree.

Top level programs

The top-level programs appear on the left side of the hierarchy tree. Top level
programs of the three first sections are always active, and are executed in the
following order, during the run time cycle (scan):

¢ (Read inputs)

e Execute the top level programs of the BEGIN section

e Execute the top level programs of the SEQUENTIAL section

e Execute the top level programs of the END section

* (Refresh outputs)

The programs of the "Begin" or "End" sections describe cyclic operations. They are
not dependent on Time. The programs of the "Sequential" section describe
sequential operations, where the Time variable explicitly appears to distinguish basic
operations. The main programs of the "Begin" section are systematically executed
at the beginning of each run time cycle. The main programs of the "End" section are
systematically executed at the end of each run time cycle. The main programs of the
"Sequential" section are executed on the basis of the SFC or FC rules and must be
written in SFC or FC language. The programs of the cyclic sections cannot be
described in the SFC or FC language. Any program of any section may own one or
more sub-programs.

Functions and function blocks

Any program of any section in the project can call the programs of the "Functions"
section. A function is an algorithm that processes one output value from several
input values. A function algorithm only works with volatile intermediate variables,
erased from one call to the other. This implies that a function should never call a
function block. A program of the "Functions" section cannot be described in the
SFC or FC language.

A-26

ICS Triplex ISaGRAF Inc.

User's Guide

Unlike functions, "Function blocks" associate an algorithm working on input values
with hidden static data, which are copied (instanced) by the system on each different
use of the function block. Any program of any section in the project can call the
programs of the "Function Blocks" section. They cannot be programmed in SFC or
FC language.

= Sub-programs

Sub-programs are functions dedicated to one (SFC, FC or other) father program. A
sub-program can be executed (called) by its parent program only. Each program of
each section may have one or more sub-programs. Any language apart from SFC
and FC can be used to describe a sub-program.

= Child SFC and FC programs

A child SFC program is a parallel program that can be started or killed by its parent
program. The parent program and child program must both be described in SFC
language.

When a parent program starts a child SFC program, it puts a SFC token into each
initial step of the child program. When a parent program Kkills a child SFC program, it
clears all the tokens existing in the steps of the child.

Any FC program of the sequential section may control other FC sub-programs. A FC
father program is blocked (waits) during execution of a FC sub-program. It is not
possible that simultaneous operations are done in father FC program and one of its
FC sub-programs.

- Links between programs and sub-programs:

Sub-programs and child programs are linked to their parent program by a line in the
hierarchy tree. An arrow ends a link between a SFC program and a SFC child
program. Note that such a link represents parallel operations.

- Programming languages

Each program is described in only one language. This language, selected when the
program is created, cannot be changed afterwards. However, FBD diagrams may
include parts in LD, and LD diagrams may include function block calls. Available
graphic languages are SFC (Sequential Function Chart), FC (Flow Chart) FBD
(Functional Block Diagram) and LD (Ladder Diagram). Available literal languages
are ST (Structured Text) and IL (Instruction List). SFC and FC languages are
reserved for main and child programs of the sequential section. The language of
each program is shown as an icon beside the program name in the Program
Management window. Below are the icons used to represent the languages:

Sequential Function Chart

Flow Chart

Functional Block Diagram

Ladder Diagram (entered with Quick LD editor)
Structured Text

Instruction List

ICS Triplex ISaGRAF Inc. A-27

User's Guide

A.3.2 Working with programs

The "File" menu groups all the commands used to create, update or modify
programs. It also launches appropriate editors to enter the contents of application
programs.

Creating a new program

The "New" function of the "File" menu allows the creation of top level, child or sub-
programs into each program section. The first piece of information to be entered is
the name of the new program according to the following naming rules:

e the maximum length of a name is 8 characters

o the first character must be a letter

 the following characters must be letters, digits or '_' character

o the naming of a program is case insensitive

Next, select the editing language chosen to describe the new program:

Sequential Function Chart

Flow Chart

Functional Block Diagram (may include parts in LD)
Ladder Diagram entered with Quick LD editor
Structured Text

Instruction List

Finally, select an execution style for the program:

Begin......cccocueeenne top level of the "Begin" section
Sequential top level of the "Sequential" section
End....ccovvviiinnn. top level of the "End" section

... in the "Functions" section

By selecting one of the first five choices, the program is put at the top level of a
Begin, End, Sequential, Functions or Function Blocks section. The selection of
the latter indicates that the new program is a SFC child program or a FC sub-
program or a sub-program. Remember that a top-level sequential program must be
described in the SFC or FC language, and that the SFC and FC languages cannot
be used for cyclic programs and their sub-programs.

Entering comments for each program

ISaGRAF allows you to attach a description text to each program of the project. This
comment text is displayed with smaller character font beside the name of the
program. Use the "File / Program comment text" command to enter or change the
comment attached to the selected program.

Editing the contents of a program

This command allows the modification of a program's contents. The editor used to
enter a program depends on the language chosen for that program. Program editing
is carried out in individual windows, so that it is possible to edit more than one

A-28

ICS Triplex ISaGRAF Inc.

User's Guide

program through parallel windows. Pressing the ENTER key allows the editing of the
highlighted program. The user can also double click with the mouse on the name of
the program to edit it.

Editing the "diary" file

A diary file is attached to each program. This is a text file, which contains all the
notes about the modifications made to the program during its lifetime. The diary file
can be edited, freely modified or printed at any time. When leaving the editor used to
modify the source code of a program, a window is automatically opened to enter
notes for the diary list. Such notes are inserted with the correct date and time into
the diary file.

The dictionary of variables

The "File / Dictionary" command runs the dictionary editor, where are declared the
variables of the project. Variables may be global (known by any program in the
project) or local to the selected program. The dictionary editor may also be used to
declare defined words, which are semantic aliases, used to replace a name or an
expression in the source code of a program.

Parameters of a function, sub-program or function block

The "File / Parameters” command allows the user to define the call and return
parameters of the selected sub-program, function or function block. This command
has no effect if a main program of the "Begin" or "End" section or a SFC program is
selected in the Program Management window.

Sub-programs, functions or function blocks may have up to 32 parameters (input or
output). A function or sub-program always has one (and only one) return parameter,
which must have the same name as the function, in order to conform to ST language
writing conventions.

The list in the upper left side of the window shows the parameters, in the order of the
calling model: first the calling parameters last the return parameters. The lower part
of the window shows the detailed description of the parameter currently selected in
the list. Any of the ISaGRAF data types may be used for a parameter. The return
parameters must be located after calling parameters in the list. Naming parameters
must conform to the following rules:

o the length of the name cannot exceed 16 characters

o the first character must be a letter

 the following characters must be letters, digits or underscore character

® naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the
return parameters are put at the end of the list.

Moving a program in the hierarchy tree

The "Rename/move" command of the "File" menu is used to change the name of a
program, or to move it into another section of the hierarchy tree. However the
description language of an existing program cannot be changed. When running this
command, the same window as the one used for creating programs is opened, and

ICS Triplex ISaGRAF Inc. A-29

User's Guide

all fields are set up with the attributes of the selected program. The name of a
program can be modified, and another section or parent program selected to move it
into the hierarchy tree.

The "Arrange programs" command of the "File" menu is used to give an explicit
order between a list of programs with same level and father. If the selected program
is at the top level, the command is used to arrange the top-level programs of the
selected section. If the selected program is at a lower level, the command arranges
only the SFC children and sub-programs which have the same father as the selected
one. When the "Arrange programs" dialog box is opened, select the program you
want to move, and press the "Up" or "Down" button to move it in the list.

Copying programs

To make a copy of a program, select the source program from the list of programs,
and run the "File / Copy" command. When running this command, the same window
as that used for creating programs is opened, with all fields set up with the attributes
of the selected program. Enter the name of the destination program and its location
in the sections of the hierarchy tree. If the destination program does not exist, it is
created at the specified location. If the destination program already exists, it is
overwritten. All the local declarations and defined words are copied with the
program. The description language of the destination program must be the same as
the one used for the source program. Press the "OK" button to copy the program.

The "Copy to other project" command of the "File" menu copies the selected
program into another project, with the same name. The child SFC programs and
sub-programs of the selected program can be copied with it. The names of the
selected program and its children must not be used in the target project. Programs
cannot be overwritten by this command. All the attached local declarations and
defined words are copied with the programs.

Deleting programs

To delete a program, first select it from the list of programs, and then run the "File /
Delete" command. A program owning child or sub-programs cannot be deleted. In
order to delete a program with child or sub-programs, the child or sub-programs
must be deleted first. All the local declarations and defined words are deleted with
the program.

Importing function or function block from library

The "Tools / Import from library" command is used to copy a function or a function
block written in IEC language described in the library to the "Functions" or
"Function blocks" section of the open project. Local variables and defined words
attached to the imported function are copied with it. When a function has been
correctly imported from the library, it can be placed in another section or another
location in the hierarchy tree, using the "File / Rename/Move" command. In order to
avoid naming clashes, the imported function or function block must be renamed
when imported in the project area. Don't forget to rename also the return parameter
in the case of a function.

A-30

ICS Triplex ISaGRAF Inc.

User's Guide

Exporting function or function block to library

The "Tools / Export to library" command is used to send a program of the
"Functions" or "Function blocks" section (in the open project) to the appropriate
library. Local variables and defined words, attached to the exported function or
function block, are copied with it. The exported function or block will have to be re-
compiled (verified) from the ISaGRAF Library Manager, to ensure that it can be used
in a library environment. Functions and function blocks of the library cannot use
global variables.

A.3.3 Running the code generation tools

is

The commands of the "Make" menu are used to run the code generator, and to
enter options and additional data used when producing the application code. Refer
to the chapter "Using the code generator” in this document for further information
about these tools.

Make the application code

The "Make" command starts the project code generation. The options for target
code generation must be set correctly before running this command. Before
generating the target code, any program that is still not verified is checked to detect
the syntax errors. 1ISaGRAF includes an incremental compiler, which does not re-
compile programs, which have already been compiled.

Verify the selected program

The "Verify" command allows the user to verify the syntax of the program currently
selected in the list. When a program is verified, with no error detected, it is not re-
verified during the code generation until its contents or dependent defined words or
variables change.

Simulating a modification

The "Touch" command simulates a modification of each program so that all of them
will be compiled again during the next code generation.

Application run-time options

This command opens a dialog box where are entered the main run-time parameters
for the execution of the application. This includes the cycle timing programming, run
time error management, the starting mode and the hardware implementation of
retained variables. Refer to the chapter "Using the Code Generator" in this
document for more explanations about this command.

Compiler options

This command is used to set-up the options used by the ISaGRAF Code Generator
to produce and optimise target code. Refer to the chapter "Using the Code
Generator" in this document for more explanations about this command.

ICS Triplex ISaGRAF Inc. A-31

User's Guide

Defining resources

A "resource" is a user-defined data (for example a file) which has to be merged with
the target code so it can be downloaded with it. Refer to the section "Using the Code
Generator" in this document for more explanations about the format of the resource
definition file.

The definition of resources (external data to be merged with the downloaded code)
accepts relative pathnames. You can use the ".\" relative path to specify an input file
located in the project folder. This applies to both TEXTFILE and BINARYFILE
resources, for the file specified in the "FROM" statement..

A.3.4 Other ISaGRAF tools

The "Project" menu groups the commands that run ISaGRAF tools for the selected
project. Refer to the corresponding chapters in this document for more information
about these tools.

Wiring I/O variables

The "IO connection" command runs the 1ISaGRAF |/O variable connection editor.
This tool is used to establish the relationship between 1/O variables declared in the
project dictionary and corresponding 1/O hardware.

Running the cross reference editor

The "Cross references" command allows the user to calculate, to view or to print
the cross-references of the project. The cross-references show the user all the
occurrences of each variable in the source code of the programs, in the entire
project. This function is very useful to detect an access to a variable or any global
resource, or to list all the occurrences of a global variable in the source code.

Entering the project descriptor

The "Project descriptor" command is used to edit the project text descriptor. This
document fully identifies the project from the others on the project list. The project
descriptor can also be used to record any remarks during the project lifetime. The
project descriptor is the one displayed in the Project Manager window.

Printing a complete document

The "Print project document” command allows the user to build and print a
complete document about the selected project. This document can group any
component (program, variable, and parameters...) of the selected project. To build a
specific (non-complete) document, the user only has to define its table of contents.

History of modifications

This command opens a dialog box where is displayed the history of modifications for
the project. Refer to the chapter "Managing projects" in this document for more
explanations about this command.

A-32

ICS Triplex ISaGRAF Inc.

User's Guide

A.3.5 Adding commands to the Tools menu

ISaGRAF provides the way to insert other commands in the "Tools" menu. User
defined commands to be added are described in "\ISAWIN\COM\ISA.MNU" text file.
You can add up to 10 commands. Comments may be inserted on any line, beginning
with ";" character. Each command is described on two lines of text, according to the
following syntax:

M=menu_string
C=command_1line

The menu string is the text to be displayed in the "Tools" menu. The command line
is any MS-DOS or Windows executable, and can be completed with arguments. In
command line, you can use "%A" characters to replace the name of the open
project, and "%P" characters to replace the name of the selected program. The
following example runs "Notepad" to edit the selected program (to be used with ST
and IL programs):

M=Edit with Notepad
C=Notepad.exe \isawin\apl\%A\%P.lsf

A.3.6 Simulating and debugging the application

%

The command of the "Debug" menu are used to run the ISaGRAF graphic
debugger, either in simulation mode or in real connected mode.

Simulation

The "Simulate" command opens the debugger in simulation mode. In this mode,
another window appears, called the simulator. This command is very useful to test
any application when the target machine is unavailable. Starting the simulator closes
the Program Management window. The Program Management window is then re-
opened in debug mode after both debugger and simulation windows are opened.
The simulator cannot be started if the target code has not been generated. The
simulator cannot be started when child windows (editors, code generation, /O
connection...) are opened. Each of them must be closed before running this
command. This command is also available from menus of ISaGRAF editors.

Real debugging

The "Debug" command opens the debugger main window, and closes the Program
Management window. The Program Management window is then re-opened in
debug mode as soon as communication is established between the debugger and
the target application. The debugger cannot be started if the target code has not
been generated. The debugger cannot be started when child windows (editors, code
generation, 1/0 connection...) are opened. Each of them must be closed before
running this command. This command is also available from menus of ISaGRAF
editors.

ICS Triplex ISaGRAF Inc. A-33

User's Guide

Preparing the debug workspace

The "Debug / Workspace" command enables you to define a list of documents for
initial workspace. Such documents can be programs, SpotLight graphics, and lists of
variables. Graphics and lists of time diagrams from previous 1SaGRAF versions are
also listed with project documents. Documents defined in the initial workspace are
automatically opened when simulation or On-line monitoring is launched.

Debugging Workspace

Documents: Workspace:
agitate (list)
div2 (time diagram)

ilprog (program)
simulate (program]

agitate (program)

divi (time dis
init {program)
zoaptemp (list)

1]

oK LCancel

The dialog box shows the existing documents of the project on the left, and
documents selected for the initial workspace on the right. Use ">>" and "<<" push
buttons to move documents from one list to the other. Each project has its own list of
documents for initial workspace.

Link set-up

The "Link set-up" command enables the user to define the parameters of the link
used for communication between the debugger on the host PC and the target
ISaGRAF system.

The "Slave number" identifies the target ISaGRAF system or task. It can be from 1
to 255. Refer to the target supplier manual for the slave number of the target system
used.

The "Communication port" identifies the hardware media between ISaGRAF
workbench and target. It can be either the name of a serial port, or "Ethernet",
reserved TCP-IP communication using the "Winsock" Version 1.1.

The "Time out" is the time left to the target system for its communication operations
between the end of a debugger question and the beginning of its response. This
time is set as a number in milliseconds. The "Retries" field is the number of
automatic trials the debugger executes for a communication operation before
detecting a communication error.

Serial link set-up

When a serial port (COML1..4) is selected, the "Set-up" button is used to access to
other serial link communication parameters.

The transmission baud rate, parity and format may be selected. When the
"hardware" choice is selected for "Flow Control", the ISaGRAF Workbench
controls the CTS and DSR lines to enable hardware handshaking during exchanges.

Ethernet link set-up

When "Ethernet" is selected as a communication port, the "Set-up" button is used to
enter the "Internet Address" and "Internet port" number, for TCP-IP communication.

A-34

ICS Triplex ISaGRAF Inc.

User's Guide

These fields use the standard formats defined by the Socket interface. The
Workbench uses the WINSOCK.DLL Version 1.1 library for TCP-IP communications.
This file must be correctly installed on the hard disk. "1100" is the default port
number used if not specified when running the ISaGRAF target.

ICS Triplex ISaGRAF Inc. A-35

User's Guide

A.4 Using the SFC editor

The SFC language is used to describe operations of a sequential process. It uses a
simple graphic representation for the different steps of a process, and conditions
that enable the change of active steps. A SFC program is entered by using the
ISaGRAF graphic SFC editor. SFC is the core of the IEC 1131-3 standard. The other
languages usually describe the actions within the steps and the logical conditions for
the transitions. The 1SaGRAF graphic SFC editor allows the user to enter complete
SFC programs. It combines graphic and text editing capabilities, thus allowing the
entry of both the SFC chart, and the corresponding actions and conditions.

A.4.1 SFC language main topics

The SFC language is used to represent sequential processes. It divides the process
cycle into a number of well-defined successive steps (self-contained situations),
separated by transitions. Refer to the ISaGRAF Languages Reference Manual for
more details on the SFC language.

Oriented lines join SFC components. The default orientation of a line is up to down.
These are the basic graphic components used to build a SFC chart:

@] Initial step

E] Step

+ Transition

\l' Jump to a step

Q Macro step

D Macro beginning step
|j Macro ending step

The SFC programming is usually separated into two different levels: The Level 1
shows the graphic chart, reference numbers of the steps and the transitions, and
comments attached to the steps and the transitions. The Level 2 is the ST or IL
programming of the actions within the steps, or the conditions attached to the
transitions. Actions or conditions may refer to sub-programs written in other
languages (FBD, LD, ST or IL). Below is an example of level 1 and level 2
programming:

A-36

ICS Triplex ISaGRAF Inc.

User's Guide

Level 1: Level 2:
Start mixing Start mixing
Action (P):
Mixing done MixLevel := 10;
1 End_action;
Mixing done
11 -
MixLevel > 100;

The level 2 programming of a step is entered in a text editor. It can include action
blocks programmed in ST or IL. The level 2 programming of a transition can be
entered either in IL or ST text languages, or with Quick LD editor.

= Divergences and convergences

Divergences and convergences are used to represent multiple links between steps
and transitions. Simple divergences or convergences represent different inclusive
possibilities between different sub parts of the process.

Single divergence (OR)
<+— Warning: following transitions are not
implicitely exclusive

<«— Single convergence (OR)

Double divergences represent parallel processes.

=

<+— Double divergence (AND)

These are parallel
processes

—_|_— <+— Double convergence (AND)

ICS Triplex ISaGRAF Inc. A-37

User's Guide

= Jump to a step

The SFC editor only allows the user to draw links in the up to down direction. A
jump to a step can be used to represent a link to an upper part of the chart.
Following charts are equivalent:

1

Jump to a transition is forbidden, and must be explicitly represented as a double
(AND) convergence.

= Macro steps

A macro step is a unique representation of a stand-alone group of steps and
transitions. A macro step begins with a beginning step and terminates with an
ending step.

f ;
\

The detailed representation of a macro step must be described in the same SFC
program. The macro-step symbol must have the same reference number as the
macro beginning step. A macro step description may contain another macro step.

A.4.2 Entering a SFC chart

To draw a SFC chart, the user simply has to introduce the significant components of
the chart. All the single lines joining two elements (horizontally or vertically) are
drawn automatically by the SFC editor. To place a SFC component on the chart, the
user has to move the selection to appropriate location and select the type of the

A-38 ICS Triplex ISaGRAF Inc.

User's Guide

component in the editor toolbar. The symbol is inserted at the current position. The
following keyboard sequences can also be used:

Insert an initial step
Insert a single step
Insert a transition
Insert a jump to a step

Insert an OR divergence or convergence / Add branches

PG = 17

...... Insert an AND divergence or convergence / Add branches
= Insert a macro step

Fa:] tFai=]

...... Insert begin or end step for the body of a macro step

(The " T symbol indicates a combination with SHIFT key)

The editing grid shows matrix cells. An editor option allows the user to show or
hide the grid during chart input. The grid is very useful for initial layout of SFC chart,
or selecting sub-parts of the chart. Use the "Options / Layout" command to display
or hide the grid.

The ISaGRAF SFC editor always shows the current position in the matrix. The
focused cell is marked in grey. The small square on its bottom right corner can be
used to freely resize the cells. The X/Y ratio of the cells can also be changed this

way.
101 |7 evaluate tmax ™) :
ACTION (M) : !
I 1
= Creating a divergence or convergence

Divergences and convergences are always drawn from the left to the right. To
draw a divergence or a convergence, its left branches has to be placed on the chart
area. The type of drawing (simple or double) is set by selecting one of these buttons
in the toolbar.

Fe: by P Insert an OR divergence or convergence / Add branches
...... Insert an AND divergence or convergence / Add branches

= Adding branches to divergences

The start and stop position of each auxiliary branch is placed on the divergence or
convergence line using these buttons in the toolbar. The left corner of the
divergence or convergence must be present before inserting new branches. The
right corners have the same style (simple or double) as the main left corner. Right
corners cannot be placed if the main left corner has not been added.

ICS Triplex ISaGRAF Inc. A-39

User's Guide

Fa: 5

Fo by Pt Insert an OR divergence or convergence / Add branches
tFE:rT tF2= | Insert an AND divergence or convergence / Add branches

Inserting a macro step

This button is used to insert a macro step in the main chart. The body of the macro
step must be entered elsewhere in the same SFC program.

Fa: 1 #7821 Body of a macro step

Macro steps must be described in the same SFC program as the main chart. A
macro step must start with a beginning step and stop with an ending step. The
sub-chart described as the macro implementation must be self-contained. The
macro beginning step must have the same reference as the macro-step symbol of
the main branch.

A.4.3 Working on an existing SFC chart

You can use either the mouse or keyboards arrows to select a rectangle area in the
chart. The whole selected area is marked in grey. The commands of the "Edit" menu
can then used:

S & cut/ copy / delete / paste commands

The following commands are available from the "Edit" menu when the "arrow"
button is selected in the editor toolbar:

Move selected rectangle from the screen to the SFC clipboard
Copy selected rectangle from the screen to the SFC clipboard
Clear (delete) selected rectangle

Insert contents SFC clipboard at the current position

The "Edit / Paste" copies SFC clipboard to the screen. Copy / Paste commands
work on both SFC chart and step/transition level 2 programming. It is also possible
to copy a chart in a program and paste it in another SFC program. Elements are
inserted before the currently selected position.

Move elements

When SFC elements are selected in the SFC chart, you can move them to another
location of the chart by dragging the selection with the mouse. While you drag the
selection, the initial location of selected elements is hatched.

C3

]

A-40

ICS Triplex ISaGRAF Inc.

User's Guide

The destination area for moved elements must be empty. No insertion is possible
while moving SFC symbols.

= Renumbering steps and transitions

Each step or transition is identified by a logical number in the SFC chart. The "Edit /
Renumber" command allows the user to automatically set up numerically sequential
reference numbers for any of the steps and the transitions of the currently edited
SFC program. When a step number is changed, all the jumps to this step are
automatically updated with the new reference number. (This also applies to macro
steps and beginning steps)

d Direct access to a step or transition

The "Edit / Go to" command allows the user to access an existing step or transition.
The scrolling position is automatically adapted so that the step or transition is visible.

- Find and replace texts

The "Edit / Find Replace" command can be used to find or replace text strings in
the complete program (all steps and transitions). The Find/Replace dialog box is
used to enter a searched text and directly open the level 2 programming section
where text occurs.

A.4.4 Entering the level 2 programming

To enter the Level 2 text, the user must double click on the step or transition symbol.
The level 2 programming is displayed on the right of the SFC window. The
separation line between SFC chart and level 2 programming can be freely moved.

You can open one or two level 2 areas at the same time. The following commands
are available from keyboard, mouse or the "Edit" menu:

Keyboard Mouse "Edit" menu
Open in last default window Enter Double-click Edit level 2
Open in separate window Ctrl+Enter Ctrl + Double-click Edit Level 2
In separate

window

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2
window.

The default language for Level 2 programming is ST (Structured Text). For
transitions, level 2 programming can also be entered with Quick LD editor. Use the
"ST/LD" button in level 2 title bar to change the active language. This command is
valid only if the level 2 programming window is empty.

ICS Triplex ISaGRAF Inc. A-41

User's Guide

STILD
/ \ Cloze Level 2 windowy

Change language
(transitions only)

A single line edit box appears at the top of the level 2 window. It is used to enter a
short description text. This text will be displayed as an IEC comment in drawing of
SFC symbols. It is very useful as it is used by other commands such as "Go To..."
and also in the SFC printout to document SFC steps and transitions.

Dezcription
text

initialize — lead i=s stopped]

ACTION (P) N

The "Options / Refresh" command can be used at any time when level 2 windows
are open to refresh the main SFC chart with modified level 2 programs.

Inserting a variable name

When programming in text language, press this button to select a variable declared
in the project dictionary and insert its name at the current position of the caret. When
programming in Quick LD, press this button to select the variable to be attached to
the selected contact or block I/O parameter.

F Inserting a Pulse action block in step
When programming the level 2 of a step, press this button to insert the template of a
Pulse action block at the current position of the caret. Below is the format of a Pulse
action block:
Action (P):
ST statement;
End;Aétion;
Pulse actions are instructions, which are executed only once when the step
becomes active. Refer to the ISaGRAF language reference for further details on
SFC programming.
N Inserting a Non stored action block in step
When programming the level 2 of a step, press this button to insert the template of a
Non stored action block at the current position of the caret. Below is the format of a
Non stored action block:
Action (N):
ST statement;
End;Aétion;
A-42 ICS Triplex ISaGRAF Inc.

User's Guide

Non stored actions are instructions which are executed on every PLC cycle when
the step is active. Refer to the 1ISaGRAF language reference for further details on
SFC programming.

Bl F1 New PO and P1 action qualifiers

1ISaGRAF supports new PO and P1 action qualifiers. When programming the level 2
of a step, press these buttons to insert the template of a PO or P1 action block at the
current position of the caret. Below is the format of such blocks:

Action (PO): Action (P1):
ST statement; ST statement;
End Action; End Action;

P1 actions are instructions which are executed only once when the step becomes
active (same as Pulse). PO actions are instructions, which are executed only once
when the step becomes inactive. Refer to the 1SaGRAF language reference for
further details on SFC programming.

- Boolean actions

Other text semantics are available to directly act on a Boolean variable according to
the step activity. Such actions consist of attaching the step activity signal to an
internal or output Boolean variable. This is the syntax of the basic Boolean actions:

<boolean_variable> (N); assigns the step activity signal to the variable
< boolean _variable>; same effect (N attribute is optional)
/ < boolean _variable>; assigns the negation of the step activity signal

to the variable

Other features are available to set or reset a Boolean variable, when the step
becomes active. This is the syntax of set and reset Boolean actions:

< boolean _variable> (S); sets the variable to TRUE when the step
activity signal becomes TRUE
< boolean _variable> (R); resets the variable to FALSE when the step

activity signal becomes TRUE

= SFC actions

Other text semantics are available to control the execution of a child SFC program.
A SFC action is a child SFC sequence, started or killed according to the condition of
the step activity signal. A SFC action can have the N (Non stored), S (Set), or R
(Reset) qualifier. This is the syntax of the basic SFC actions:

<child_program> (N); starts the child sequence when the step
becomes active, and kills the child sequence
when the step becomes inactive

<child_program>; same effect as the preceding syntax (N
attribute is optional)

ICS Triplex ISaGRAF Inc. A-43

User's Guide

<child_program> (S); starts the child sequence when the step
becomes active - nothing is done when the
step becomes inactive

<child_program> (R); kills the child sequence when the step
becomes active - nothing is done when the
step becomes inactive

The SFC sequence specified, as an action must be an existing child SFC program
of the currently edited program, created with the ISaGRAF program manager.

Transitions written in ST

The level 2 of a transition is a Boolean expression. To program it in ST language,
just enter the Boolean condition according to the ST syntax. Optionally, a semicolon
may be added at the end of the expression.

Transitions written in Quick Ladder

Quick LD editor is available to program the level 2 condition of a transition. In this
case, the diagram is made of just one rung, with only one coil, which represents the
transition. The name of the transition is not repeated with the coil symbol. Below is
an example of transition condition programmed in Quick LD.

tonogle Cmd100

Maniode

When programming in Quick LD, use the keyboard arrows to move the selection in
the programming logical grid, and then use the following shortcuts to insert symbols:
F2: e, insert a contact after the selected symbol / initiate the rung

F3i e insert a contact before the selected symbol

F4: ... insert a contact in parallel with the selected symbol

| T insert a block after the selected symbol

F7i e, insert a block before the selected symbol

F8: i insert a block in parallel with the selected symbol

You can also click on the function key bar at the bottom of the level 2 window
instead of hitting function keys.

Hit RETURN when the selection is on a contact or a block I/O parameter to select a
variable or enter a constant value. Hit RETURN when the selection is on a function
block to select the type of the function block. You can also double click on a symbol
for the same effect.

Hit SPACE bar when a contact is selected to change the type of contact (direct,
negated or with pulse detection). Refer to the chapter "Using the Quick LD editor" in
this document for more details about Quick LD capabilities.

A-44

ICS Triplex ISaGRAF Inc.

User's Guide

A.45 Using the SFC gallery

The 1ISaGRAF SFC editor manages a SFC gallery: it is a collection of SFC structures
that can be inserted in any SFC chart. Elements of the SFC gallery can optionally
embed the level 2 programming of steps and transitions. Use the following
commands of the "Tools" menu:

Copy to SFC gallery copy selected elements to SFC gallery
Paste from SFC gallery paste a SFC gallery element at the current location

When copying to SFC gallery (i.e. creating a new SFC gallery element), you can
optionally ask to embed level 2 programming of selected SFC symbols.

ICS Triplex ISaGRAF Inc. A-45

User's Guide

A.5 Using the Flow Chart editor

The ISaGRAF Flow Chart graphic editor allows the user to enter complete FC (Flow
Chart) programs, with actions and tests (decisions) programmed in either ST, IL or
Quick LD language. Flow Chart is a decision diagram, which can also be used to
describe sequential operations as it enables some advanced features such as non-
blocking backward jumps.

A.5.1 Basics of the FC language

Flow Chart (FC) is a graphic language used to describe sequential operations. A
Flow Chart diagram is composed of Actions and Tests. Between Actions and tests
are oriented links representing data flow. Below are graphic components of the Flow
Chart language:

T Beginning of FC chart: A "begin" symbol must appear at the beginning of
a Flow Chart program. It is unique and cannot be omitted. It represents the initial
state of the chart when it is activated.

= Ending of FC chart: An "end" symbol must appear at the end of a Flow
Chart program. It is unique and cannot be omitted. It is possible that no connection
is drawn to the "End" symbol (always looping chart), but "End" symbol is still drawn
anyway at the bottom of the chart. It represents the final state of the chart, when its
execution has been completed.

Jr FC flow links: A flow link is a line that represents a flow between two
points of the diagram. An arrow always terminates a link. Two links cannot start from
the same source connection point.

=l FC actions: An action symbol represents actions to be performed. A
number and a name identify an action. Two different objects of the same chart
cannot have the same name or logical number. Programming language for an action
can be ST, LD or IL. An action is always connected with links, one arriving to it, one
starting from it.

* FC tests: A test represents a Boolean condition. A number and a name
identify a test. According to the evaluation of attached ST, LD or IL expression, the
flow is directed to "YES" or "NO" path. When programmed in ST text, a semicolon
may optionally follow the expression. When programmed in LD, the unique coil
represents the condition value.

=1 FC sub-program: The system enables the description of a hierarchised
structure of FC programs. FC programs are organised in a hierarchy tree. Each FC
program can call other FC programs. Such a program is called a child program of
the FC program, which calls it. FC programs, which call FC sub-programs, are called
father program. FC programs are linked together into a main hierarchy tree, using a

A-46

ICS Triplex ISaGRAF Inc.

User's Guide

"father - child" relation. A sub-program symbol in a Flow Chart represents a call to a
Flow Chart sub-program. Execution of the calling FC program is suspended till the
sub-program execution is complete.

£ FC 1/0 specific action: An I/O specific action symbol represents actions
to be performed. As other actions, a number and a name identify an 1/0 specific
action. The same semantic is used on standard actions and I/O specific actions. The
aim of 1/0 specific actions is only to make the chart more readable and to give focus
on non-portable parts of the chart. Using I/O specific actions is an optional feature.
1/0 specific blocks have exactly the same behavior as standard actions.

() FC connectors: Connectors are used to represent a link between two
points of the diagram without drawing it. A connector is represented as a circle and
is connected to the source of the flow. The drawing of the connector is completed,
on the appropriate side (depending on the direction of the data flow), by the
identification of the target point (generally the name of the target symbol). A
connector always targets a defined Flow Chart symbol. Its logical number identifies
the destination symbol.

5 FC comments: A comment block contains text that has no sense for the
semantic of the chart. It can be inserted anywhere on a free space of the Flow Chart
document window, and is used to document the program.

A.5.2 Entering a Flow Chart

To enter a chart, you have to place elements (actions, decision tests, and
connectors...) in the graphic area, and draw flow links between them.

e Inserting objects

To insert an object in the diagram, select the corresponding button in the toolbar and
click in the graphic area, where you want to insert it. You can either put the element
on an empty area, or insert it in a flow by clicking on a flow link. Insertion on a link is
allowed for top to bottom vertical links only. You can insert the following basic

elements:

= Action programmed in ST, IL or Quick LD

o 1/0 specific action (highlights a particular non-portable action)
+ E—— Test (decision) programmed in ST, IL or Quick LD

O S Connector

B Call to a FC sub-program

S|

...................... Comment (description text)
The 1SaGRAF Flow Chart editor also proposes you a list of classical Flow Chart

structures. Such structures can only be inserted on an existing flow link. They cannot
be put in an empty area:

3&. If / Then / Else (binary selection)

ICS Triplex ISaGRAF Inc. A-47

User's Guide

@ Repeat until (waits for a condition)
<G' While (loops while a condition is true)

Selecting objects

Selecting graphic objects is needed for most of the editing commands. The
ISaGRAF FC graphic editor enables the selection of one or more objects existing in
the diagram area. To select objects, the "select" (button with an arrow) choice must
be checked in the editor toolbar. To select one object, the user only has to click on
its symbol.

To select a list of objects, drag the mouse in the diagram to draw a rectangle area.
All graphic objects in the selection rectangle are marked as "selected".

A selected object is drawn in dark blue color, with little black squares around its
graphic symbol. It is also possible to add or remove one object to a multiple
selection, by clicking on its symbol with Shift or Ctrl key pressed.

By making a new selection, selection of all objects previously selected is removed.
To remove the existing selection, simply click with the mouse in an empty area,
outside of the rectangle which borders the selected objects.

For single selection, it is possible to use keyboard arrows to move selection from
one object to the other in the chart. Flow links can also be selected.

Inserting comments

Comments may be inserted anywhere in an empty part of the diagram. Comments
have no influence on the program execution. They allow a higher readability of the
diagram. To insert a comment block, select the corresponding button in the toolbar,
and click in the diagram where comment must be put. Double click on a comment to
enter / change its text. No special leading or trailing characters such as "(*" and "*)"
are needed when entering the text of a comment block. A comment block may be
resized by dragging the corners of its border when it is selected.

Drawing flow links

Select this button in the toolbar to draw a flow link between existing elements. A link
must always be drawn in the direction of the flow. First select a non-connected
output point of a FC element, and drag the mouse to the destination point to insert
the link. The destination point can either be the top (input point) of a non-connected
FC element, or any location on an existing link. Convergence points between links
are shown with small grey circles in the Flow Chart. Convergence points can also be
selected and moved in order to arrange the diagram.

Using connectors

The 1SaGRAF Flow Chart editor enables the use of graphic connectors, as a
replacement of a visible flow link. Connectors can be very useful to avoid very long
links and increase chart readability. A connector cannot be used to establish a link
with another FC program.

A-48

ICS Triplex ISaGRAF Inc.

User's Guide

A connector is put in the chart as other FC objects. It is represented by a circle
containing the numerical reference of targeted element (destination of the flow link).
The short description text of the target element is displayed close to the connector

circle.
03:FProcess

r
04:Everything OK
Yesg

r

05 Continue. .

Mo

Exception handling

e Moving objects

To move objects in the chart, you have to select them, and drag the mouse to move
them within the chart. You can either move a single element or a multiple selection.
Elements cannot be overlapped when moving them. Moving elements cannot be
used to connect them to an existing link.

When a single element (action, test...) is moved, the 1ISaGRAF Flow Chart editor
automatically moves with the selected element all objects placed below and
connected to it. This feature does not operate in the case of a multiple selection.

" Resizing objects

Any graphic element of a flow apart from "Begin", "End" symbols and connectors can
be resized freely. To resize an element, you first have to select it. Then drag with the
mouse the small squares drawn on its border to change its size.

When an element is connected to a flow link, resizing it horizontally acts on both left
and right borders, so that the element is still correctly centred on the link when
resized.

2 Swapping the outputs of a test

You can swap locations of YES / NO outputs on a test (decision). To do that, simply
double click on either "Yes" or "No" marks displayed close to the test symbol.

ICS Triplex ISaGRAF Inc. A-49

User's Guide

A.5.3 Working on an existing chart

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a chart

The DEL key can be used to remove the selected elements. Pending links are
deleted with selected elements. Use "Edit / Undo" command to restore elements
after a DEL command. The DEL command can also be applied to a group of
elements selected in the diagram. The "Cut", "Copy", "Paste" commands of the
"Edit" menu are used to move or copy selected elements.

Find and replace

The "Edit / Find Replace" commands can be used to find or replace text strings in
the complete program (all actions and tests programmed in ST, IL or Quick LD). The
Find/Replace dialog box is used to enter a text to be searched and to directly open
the programming section where the text is found.

Direct access to an element

The "Edit Go to" command allows the user to access a graphic element existing in
the chart. The scrolling position is automatically adapted so that the element is
visible. The element, when reached, is selected.

Renumbering elements

The "Edit / Renumber" command is used to renumber elements of the Flow Chart.
Any FC element put in the chart is identified with a unique reference number. The
editor each time new elements are inserted allocates reference numbers. The
"Renumber" allows you to re-adjust element numbering according to their location in
the chart. Growing numbering is performed from top to bottom and from left to right

A.5.4 Entering level 2 programs

To enter the level 2 program, the user must double click on the action or test symbol.
The level 2 programming is displayed on the right of the FC window. The separation
line between FC chart and level 2 programming can be freely moved. You can open
one or two level 2 areas at the same time. The following commands are available
from keyboard, mouse or the "Edit" menu:

Keyboard Mouse "Edit" menu

Open in last default window Enter Double Click Edit level 2
Open in separate window Ctrl+Enter Ctrl + Double-click Edit Level 2 in a
separate window

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2
window.

A-50

ICS Triplex ISaGRAF Inc.

User's Guide

The default language for Level 2 programming is ST (Structured Text). The
programming language can also be IL or Quick LD. The name of the selected
language is displayed in a small box in the level 2 title bar. Run the "Options / Set
Level 2 language" command from menus or click on that box to change the active
language. This command is valid only if the level 2 programming window is empty.

04 Start machine M100
IL Language
ST Language
LD Language

A single line edit box appears at the top of the level 2 window. It is used to enter a
short description text. This text will be displayed as an IEC comment in the drawing
of FC symbols. It is very useful as it is used by other commands such as "Go To..."
and also in the FC printout to document FC actions and tests.

04: Start machine M100

Start machine k100

The "Options / Refresh" command can be used at any time when level 2 windows
are open to refresh the main FC chart with modified level 2 programs.

A.5.5 Programming level 2 with Quick LD

Quick LD editor is available for level 2 programming. In the case of a decision test,
the LD diagram is made of just one rung, with only one coil, which represents the
decision. The name of the test is not repeated with the coil symbol. Below is an
example of a test programmed in Quick LD:

toggle Ctd100

Maniode

When programming in Quick LD, use the keyboard arrows to move the selection in
the programming logical grid, and then use the following shortcuts to insert symbols:

F2: e insert a contact after the selected symbol / initiate the rung

F3i e insert a contact before the selected symbol

Fdi i, insert a contact in parallel with the selected symbol

F5: ... add a coil in parallel with the selected one (not for tests)

FB: i insert a block after the selected symbol

F7: i insert a block before the selected symbol

F8:... insert a block in parallel with the selected symbol

FO: i, add a jump symbol in parallel with the selected coil (not for tests)

ICS Triplex ISaGRAF Inc. A-51

User's Guide

A jump leads to a rung name. The name of a rung can be entered by hitting ENTER
when selection is on the rung head. The ISaGRAF editor keeps the memory of the
rung labels you already entered, whether it has been specified for a rung name or a
jump operation. The "Jump/Label™ dialog box gives you the possibility either to enter
a new label, or to select an existing one. If you enter a new name, it will
automatically be added to the list. The "Remove" button is used to remove the
selected name from the list. It does not remove the label on the rung you selected in
the diagram. To do this, just press OK when the edit box is empty.

You can also press buttons in the LD toolbar instead of hitting function keys.

Hit ENTER when the selection is on a contact or a block /O parameter to select a
variable or enter a constant value. Hit ENTER when the selection is on a function
block to select the type of the function block. You can also double click on a symbol
for the same effect.

Hit Control + SPACE bar when a contact is selected to change the type of contact or
coil (direct, negated). Refer to the chapter "Using the Quick LD editor" in this
document for more details about Quick LD capabilities.

A.5.6 Display options

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
diagram. Use the check boxes in the "Workspace" group to display or hide editor
toolbars and status bar. Option of the "Document" group allow you to show or hide
points of the editing grid and to display chart either in black and white or with colors.

Q Use the "Zoom" button of the toolbar to change current zoom ratio. This
command is also available when working on a Quick LD program attached to an
action or a test.

Use the "Grid" button of the toolbar to show or hide points of the editing
grid. This command is also available when working on a Quick LD program attached
to an action or a test.

Use the "Options / Font" command to select the name of the character font to be
used in all ISaGRAF documents. When called from a ST or IL block, you can specify
size of the font. When selecting font for a graphic view (FC or Quick LD), font style
and size are not relevant and do not need to be specified. ISaGRAF graphic editors
always calculate the font size according to the current zoom ratio.

A-52

ICS Triplex ISaGRAF Inc.

User's Guide

A.6 Using the Quick LD editor

The LD language enables graphic representation of Boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology.
Boolean input variables are attached to graphic contacts. Boolean output variables
are attached to graphic coils. The 1ISaGRAF Quick LD editor provides easy LD
diagram entering using either keyboard or mouse. Elements are automatically linked
and arranged on rungs by the Quick LD editor. No connection is drawn manually by
the user. The Quick LD editor also arranges rungs in the diagram so that the space
filled by the diagram is always optimised.

A.6.1 Basics of the LD language

I_

1F

O

An LD program is expressed as a list of rungs where contacts and coils are
arranged. Below are the basic components of an LD diagram:

Rung head (left power rail)

Each rung begins with a left power rail, which represents the initial "TRUE" state.
1ISaGRAF Quick LD editor automatically creates the left power rail when the first
contact of the rung is placed by the user. Each rung may have a logical name, which
can be used as a label for jump instructions.

Contacts

A contact modifies the Boolean data flow, according to the state of a Boolean
variable. The name of the variable is displayed upon the contact symbol. ISaGRAF
Quick LD editor supports the following types of contacts:

Direct contact

Negated contact
‘lFl' Contact with positive (rising) edge detection
..................... Contact with negative (falling) edge detection

Coils

A coil represents an action. The rung state (state of the link on the left of the coil) is
used to force a Boolean variable. The name of the variable is displayed upon the coil
symbol. ISaGRAF Quick LD editor supports the following types of coils:

Direct coll
. Negated coil
2 1 "Set" action coil
{R} "Reset" action coil

S (3 Coil with positive (rising) edge detection
..................... Coil with negative (falling) edge detection

ICS Triplex ISaGRAF Inc. A-53

User's Guide

E03

—u

Function blocks

A block in an LD diagram can represent a function, a function block, a sub-program
or an operator. lIts first input and output parameters are always connected to the
rung. Other input and output parameters are literally written outside of the block
rectangle.

time§i= THap=ed

"In Line" Function blocks

In the Quick LD editor, you can change an edited Function Block to an "In Line"
Function Block by selecting the block, then choosing In Line from the Tools menu.
This command enables you to set or reset the "In Line" attribute of the edited FB.
When the "In Line" attribute is set, a small title bar showing the "In Line" text is
displayed with toolbars.

Rung end (right power rail)

A rung ends with a right power rail. Using the Quick LD editor, the right power rail is
automatically inserted when the user places a coil.

Jump symbol

A jump symbol always refers to a rung label; i.e. the name of a rung defined
somewhere in the same LD diagram. It is placed at the end of a rung. When the rung
state is TRUE, the execution of the diagram directly jumps to this target rung. Note
that backward jumps are dangerous as they may lead to a blocking of the PLC loop
in some cases.

Return symbol

A return symbol is placed at the end of a rung. It indicates that the execution of the
program must be stopped if the rung state is TRUE.

The "EN" input

On some operators, functions or function blocks, the first input does not have
Boolean data type. As the first input must always be connected to the rung, another
input is automatically inserted at the first position, called "EN". The block is executed
only if the EN input is TRUE. Below is the example of a comparison operator, and
the equivalent code expressed in ST:

e IF rung state THEN
en g := (valuel > wvalue
\raluel_in1 2);
ELSE
wvalue? | q := FALSE;
i HICH END_IF;
(* continue rung with g
state *)

A-54

ICS Triplex ISaGRAF Inc.

User's Guide

HHHA

The "ENO" output

On some operators, functions or function blocks, the first output does not have
Boolean data type. As the first output must always be connected to the rung, another
output is automatically inserted at the first position, called "ENO". The ENO output
always takes the same state as the first input of the block. Below is an example with
AVERAGE function block, and the equivalent code expressed in ST:

AERAGE AVERAGE (rung state, Signal,
—RUN eno 100) ; -
signal | T OutSignal := AVERAGE.XOUT;
eno := rung_state;
100 (* continue rung with eno
N
- state *)

On some cases, both EN and ENO are required. Below is an example with an
arithmetic operator, and the equivalent code expressed in ST:

[+ IF rung_state THEN
=n . result 1= (valuel +
waluet |) value2) ;
] END IF;
waluez | eno := rung_state;
B L (* continue rung with eno
state ¥*)

Limitations of Quick LD editor

The 1SaGRAF Quick LD editor does not allow to continue a rung (insert other
contacts or coils) on the right of a coil. If several outputs have to be made on the
same rung, the corresponding coils must be drawn in parallel.

A.6.2 Entering an LD diagram

All the editing commands of the Quick LD editor may be achieved either with the
keyboard or with the mouse.

The editing grid

The LD diagram is entered in a logical matrix. Each cell of the matrix may contain up
to one LD symbol. Use the arrows of the keyboard, or click on a cell to move the
current selection. The selected cell is marked in reverse. For some cut/copy/paste
operations, it is possible to select several cells. To do that with the mouse, just drag
the mouse cursor in the diagram. With keyboard, use arrow keys with SHIFT key
pressed.

Starting a new rung

To add a new rung to a diagram, move the selection after the last existing rung and
insert a contact (hit F2 or press the corresponding button in the LD toolbar). A new
rung with one contact and one coil is created.

ICS Triplex ISaGRAF Inc. A-55

User's Guide

Entering the rung comment

Each rung may be documented with up to two lines of text. To enter a rung comment
text, move the selection on the cell upon the rung and hit ENTER key, or double
click on this cell with the mouse:
Hit ENTER on this cell
e
blead brandom ledZ
zel2
- Entering the rung label
Each rung may be identified by a name. This name can be used as a target label for
jump operations. To enter or change the label of a rung, move the selection on rung
head and hit ENTER key, or double click on this cell with the mouse:
/ Hit ENTER on this cell
(% *) /
J blead brandom ledz
zall
The 1ISaGRAF Quick LD editor keeps the memory of the rung labels you already
entered, whether it has been specified for a rung name or a jump operation. The
"Jump/Label™ dialog box gives you the possibility either to enter a new label, or to
select an existing one.
If you enter a new name, it will automatically be added to the list. The "Remove"
button is used to remove the selected name from the list. It does not remove the
label on the rung you selected in the diagram. To do this, just press OK when the
edit box is empty.
= Inserting symbols on arung
The insertion of symbols (contacts, coils, blocks...) on an existing rung is always
made according to the current selection. You have to select a valid cell position
within the rung and hit one of the following function keys to insert:
A-56 ICS Triplex ISaGRAF Inc.

User's Guide

2

a contact before the selected symbol (on the left)
a contact after the selected symbol (on the right)
a contact in parallel with the selected symbol

a block before the selected symbol (on the left)
a block after the selected symbol (on the right)

a block in parallel with the selected symbol

The following commands are valid when the selection is on the rung output (coil):
add a coil in parallel with the selected one

add a "Jump" symbol in parallel with the selected one

add a "Return" symbol in parallel with the selected one

For parallel insertion (F4/F8), if several contacts of a rung are selected together, the
symbol is inserted in parallel with the group of selected elements. Below is an
example:

—F4—

To insert symbols in the diagram, you can also use the commands of the "Insert"
menu. With the mouse, you can click on the LD toolbar, on the type of symbol you
want to insert:

F2: 9B F2:4HE Fd: Gl | Fo:{n | FE:{HE FRded Fe: 1l | F2:—% tFa.@

Entering symbols

To associate a variable symbol to a contact or a coil, select it and hit ENTER. With
the mouse, double click on the contact or coil. A variable selection box appears.
Refer to chapter "More about program editors" in this document for further
information about how to use this box. To associate a function, function block or
operator to a block, hit ENTER when the selection is on the inside its rectangle. To
associate a variable symbol to input or output block parameter the selection must be
on the corresponding location, outside the rectangle of the block.

Dialog boxes including variable or block selection lists are normally used for text
input. If the "Manual keyboard input" mode is checked in the "Options" menu,
variable symbols and block names are entered directly in a single text edit box.
Enter new text and hit "Enter" key to validate it, or hit "Escape"” key to exit
modification and close the text editing box. The text edit box used in "manual
keyboard input" mode cannot be closed with the mouse.

Changing the type of contacts and coils

The "Edit / Change coil/contact type" changes the type of the selected contact or
coil. A contact may be direct, negated, with positive or negative edge detection. A

ICS Triplex ISaGRAF Inc. A-57

User's Guide

coil may be direct, negated, set or reset, with positive or negative edge detection.
Hitting the SPACE bar has the same effect.

Inserting arung in a diagram

The "Edit / Insert rung" command insert a new rung in the diagram, before the
selected one. The rung is initiated with one contact and one coil.

A.6.3 Working on an existing diagram

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a diagram

The DEL key can be used to remove the selected elements. It is not possible to
remove a coil, a jump or return symbol when it is the only output of a rung. Use "Edit
/ Undo" command to restore elements after a DEL command. The DEL command
can also be applied to a group of elements selected in the diagram. The DEL
command can be used when selection is on the rung comment text to reset it. The
DEL command, used when the selection is on the rung head, removes the entire
rung.

Copying symbols

The "Cut", "Copy", "Paste" commands of the "Edit" menu are used to move or copy
selected elements. These commands do not act on rung comments. The "Edit /
Paste special" command gives you the choice to insert the pasted elements:

» before the selected element (on the left)

o after the selected element (on the right)

« in parallel with the selected element

Managing entire rungs

All editing commands (delete, copy, cut...) act on the entire rung if the selection is on
the rung header (left power rail). This provides an easy way to arrange rungs in the
diagram, just by moving the selection in the first column. It is also possible to extend
the selection vertically so that it includes several rung headers. In this case edition
commands may be applied to a list of entire rungs.

Find and replace

The "Edit / Find" and "Edit / Replace" menu commands are used to find and
replace texts in the diagram. Only complete names can be found. Search acts on
contacts, coils, block names, block parameters and run labels. It cannot be used to
find a string in a rung comment. The Replace command cannot be used to change
the type of a block. The research can be made upward or downward, starting at
position of the current selection. It "loops" when the limits of the diagram are
reached. The following shortcuts are also available for quick research of variable
names:

A-58

ICS Triplex ISaGRAF Inc.

User's Guide

ALT+F2 finds the next element with the same variable name as the element
currently selected. This feature can also be applied to function blocks and rung
labels.

ALT+F5 finds the next coil with the same variable name as the element currently
selected. This feature is mainly used in debug mode, to quickly find out the rungs,
which forces a suspicious variable.

A.6.4 Display options

The commands of the "Options" menu are used to customise the drawing of the LD
diagram on the screen, and to hide or display some types of information.

= Tooltips

Use the "Options / Tooltips" command to hide or display variable comments
appearing as tooltips in the whole diagram. The comment appears as a tooltip when
the cursor moves over the corresponding variable block. This option is available in
off-line and on-line modes.

= Rung comments

Use the "Options / Rung comments" command to hide or display the rung
comments in the whole diagram. Hiding the rung comments can be required to have
a more condensed view on a huge diagram, as each comment consumes one row in
the editing matrix. This option does not affect the contents of the existing rung
comments and can be swapped at any time.

= Names and aliases

Each variable, when associated to a contact, a coil or a block /O parameter is
identified by its symbolic name. The ISaGRAF Quick LD editor also introduces the
notion or "alias" for each variable. The alias of the variable is the variable comment
text, truncated before the first ;' character, and limited to 16 characters. Below are

examples:
variable comment : alias:
short text short text

long text with no separator 1long text with n
short text: long description short text

Aliases have no effect on the execution of the LD diagram and should be considered
as comments from a syntactic point of view. A variable alias is automatically
extracted from the variable comment when the name is selected in the variable list. It
cannot be changed manually. Use the "Options / Contacts and coils" commands
to select a display mode for variable identification. The following modes are
available:

o display only the variable names

o display only the variable aliases

o display both names and aliases

ICS Triplex ISaGRAF Inc. A-59

User's Guide

Quick LD editor does not automatically updates LD documents when variable
aliases are changed in the dictionary. Use the "Options / Contacts and coils /
Update aliases" command to update all aliases in edited diagram. You can also set
the "Always update on Open" option from "Options / Contacts and coils" to ask
ISaGRAF to automatically update all used aliases each time a Quick LD program is
open. Warning: Setting this option may significantly increase the time spent to open
a program.

Drawing options

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
graphic LD diagram.

Use the check boxes in the "Workspace" group to display or hide editor tool bar,
status bar and LD toolbar. Options of the "Document” group allow you to show or
hide points of the editing grid, and to enable/disable the use of colors for the
drawing.

Q Options of the "Zoom" group allow you to select a main zoom ratio. You
can also use the "zoom" button in the editor toolbar to swap between default zoom
ratios.

= You can also customise the X/Y aspect ratio of cells in the editing grid.
This last option can be used to reduce the default cell width, if you commonly use
short names for variables. You can also use the "width" button in the editor toolbar to
change the X/Y aspect ratio without entering the Layout dialog box.

Use the "Options / Font" command to select the name of the character font to be
used in all ISaGRAF graphic documents. When selecting font, font style and size are
not relevant and do not need to be specified. ISaGRAF graphic editors always
calculate the font size according to selected zoom ratio.

A.6.5 On-line help

To get help about function blocks from the Quick LD editor:

. Select an existing function block on the LD diagram.

. Press on F1.

Help about the function block is displayed. In case of custom "C" or IEC function or
function block, the help displayed is the "technical note" entered in the library editor
(text only).

A-60

ICS Triplex ISaGRAF Inc.

User's Guide

A.7 Using the FBD/LD editor

The ISaGRAF FBD/LD graphic editor allows the user to enter complete FBD
programs, which may includes parts in LD. It combines graphic and text-editing
capabilities; so both diagrams and corresponding inputs and outputs can be entered.
As this editor is more dedicated to FBD language, pure LD diagrams should rather
be entered using the ISaGRAF Quick LD editor.

A.7.1 Basics of the FBD/LD languages

The FBD language is a graphic representation of many different types of
equations. Rectangular function boxes represent operators. Function inputs are
connected to the left side of the box. Function outputs are connected to the right
side. Diagram inputs and outputs (variables) are connected to the function boxes
with logical links. An output of a function box may be connected to the input of
another box.

The LD language enables graphic representation of Boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology.
Boolean input variables are attached to graphic contacts. Boolean output variables
are attached to graphic coils. Contacts and coils are connected together and to left
and right power rails by horizontal lines. Each line segment has a Boolean state of
FALSE or TRUE. The Boolean state is the same for all the segments directly linked
together. Any horizontal line connected to the left vertical power rail has the TRUE
state.

LD and FBD diagrams are always interpreted from the left to the right and from the
top to the bottom. Refer to the 1SaGRAF Language reference Manual for more
details about LD and FBD languages. These are the basic graphic components of
the LD and FBD languages, such as supported by the FBD/LD editor:

- Left power rail

Rungs must be connected on the left to a left power rail, which represents the initial
"TRUE" state. ISaGRAF FBD editor also allows connecting any Boolean symbol to a
left power rail.

- Right power rail

Coils may be connected on the right to a right power rail. This is an optional feature
when using the ISaGRAF FBD/LD editor. If a coil is not connected on the right, it
includes a right power rail in its own drawing.

=" LD vertical "OR" connection

LD vertical connection accepts several connections on the left and several
connections on the right. Each connection on the right is equal to the OR
combination of the connections on the left.

ICS Triplex ISaGRAF Inc. A-61

User's Guide

1t

{}

Contacts

A contact modifies the Boolean data flow, according to the state of a Boolean
variable. The name of the variable is displayed upon the contact symbol. ISaGRAF
FBD/LD editor supports the following types of contacts:

..................... Direct contact

‘N' Negated contact

‘IPI' Contact with positive (rising) edge detection
‘lHl' Contact with negative (falling) edge detection
Coils

A coil represents an action. It must be connected on the left to a Boolean symbol
such as a contact. The name of the variable is displayed upon the coil symbol.
ISaGRAF FBD/LD editor supports the following types of coils:

Direct coil
Negated coil
"Set" action coil
"Reset" action coil

Function blocks

A block in an FBD diagram can represent a function, a function block, a sub-program
or an operator. Inputs and outputs must be connected to variables, contacts or coils,
or other block inputs or outputs. Formal parameter names are displayed inside of the
block rectangle.

TON

PT ET

Labels

Labels can be placed everywhere in the diagram. Labels are used as targets for
jump instructions, to change the execution order in the diagram. Labels are not
connected to other elements. It is highly recommended to place labels on the left of
the diagram, in order to increase the diagram readability.

Jumps

A jump symbol always refers to a label placed elsewhere in the diagram. Its left
connection must be linked to a Boolean point. When the left connection is TRUE, the
execution of the diagram directly jumps to this target label. Note that backward
jumps are dangerous as they may lead to a blocking of the PLC loop in some cases.

Return symbol

A return symbol is connected to a Boolean point. It indicates that the execution of
the program must be stopped if the rung state is TRUE.

A-62

ICS Triplex ISaGRAF Inc.

User's Guide

Variables

Variables in the diagram are represented inside small rectangles, connected on the
left or on the right to other elements of the diagram.

+ . .

5 Connection links
Connection links are drawn between elements put in the diagram. Links are always
drawn from an output to an input point (in the direction of the data flow).

B Connection links with Boolean negation

Some Boolean links are represented with a small circle on their right extremity. This
represent a Boolean negation of the information transported by the link.

H

User defined corners

User defined points may be defined on links. They allow the user to manually control
the routing of a link. If no corner is placed, the ISaGRAF FBD/LD editor uses a
default routing algorithm.

ICS Triplex ISaGRAF Inc. A-63

User's Guide

A.7.2 Entering an FBD diagram

=

To enter a diagram, you have to place elements (blocks, variables, contacts, and
coils...) in the graphic area, and draw links between them.

Inserting objects

To insert an object in the diagram, select the corresponding button in the toolbar and
click in the graphic area, where you want to insert it.

Selecting objects

Selecting graphic objects is needed for most of the editing commands. The
ISaGRAF LD/FBD graphic editor enables the selection of one or more existing
objects in the diagram area. To select objects, the "select" (button with an arrow)
choice must be checked in the editor toolbar. To select one object, the user only has
to click on its symbol. To select a list of objects, drag the mouse in the diagram and
select a rectangle area. All the graphic objects that intersect the selection rectangle
are marked as "selected". A selected object is drawn with little black squares
around its graphic symbol. By making a new selection, all previously selected
objects are unselected. To remove the existing selection, simply click with the
mouse on an empty area, outside of the rectangle which borders the selected
objects.

Inserting comments

Comments may be inserted anywhere in the diagram. Comments have no influence
on the program execution. They allow a higher readability of the diagram. To insert a
comment block, select this button in the toolbar, and drag the mouse to select the
rectangle area where comment must be drawn. Then enter the text of the comment.
No special leading or trailing characters such as "(*" and "*)" are needed when
entering the text of a comment block. A comment block may be resized by dragging
the corners of its border when it is selected.

Moving objects

To move objects in the diagram, you have to select them, and drag the mouse to
move the selected area in the diagram. To move connected objects, the user simply
has to move the graphic symbols put on the diagram. The ISaGRAF LD/FBD editor
will automatically redraw the connection lines between the objects that were moved,
based on their new location.

Drawing links

Select one of these buttons in the toolbar to draw a link between connection points
of existing elements. If you draw a link from a connection point to an empty location
in the diagram, a user-defined corner automatically terminates it, so that you can
continue drawing another segment.

Changing link drawing

The "Tools / Move line" command is used when a link is selected in the diagram to
change its automatic routing. This command has no effect when the link is
connected to a user-defined corner. When a link is drawn as three segments, this
command changes the position of the second segment. Below are examples:

A-64

ICS Triplex ISaGRAF Inc.

User's Guide

1t

P

=

Changing the type of a link

You can easily change the type of link (with or without Boolean negation) by double
clicking with the mouse on its right extremity.

Drawing LD rungs

To draw a new LD rung, first insert the left power rail. Then place a coil: it will be
automatically linked to the power rail. Other contacts and vertical OR connections
may be directly inserted on the rung line, without drawing any new connection link.
When a new LD contact or coil is inserted in an empty space of the editing area, the
new horizontal rung line is automatically drawn from the new inserted element to the
existing power rails on the left and on the right. This line is not automatically drawn if
the new contact or coil is not placed between power rails. The new inserted contact
or coil can then be freely moved on the drawn rung. The horizontal lines created by
the editor while inserting an LD contact or coil symbol can be selected and deleted.
You can insert a new LD contact or coil symbol on the horizontal line of an existing
rung. The editor automatically cuts the rungs and connects it to the left and right
connection points of the new inserted contact or coil.

Multiple connections

A multiple connection can be created on the right of any output point. It means that
the information is broadcasted to several other points in the diagram. The same
state is propagated on each extremity on the right. The number of lines drawn at the
right of an output connection point is not limited. Two connection lines cannot have
their right extremity connected on the same input point, except for the following LD
symbols:

A Right power rail

EI‘ Multiple connection on the left (OR) operator
These LD symbols can have an unlimited number of inputs.

A.7.3 Working on an existing diagram

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a diagram

The DEL key can be used to remove the selected elements. Pending links are
deleted with selected elements. Use "Edit / Undo" command to restore elements
after a DEL command. The DEL command can also be applied to a group of
elements selected in the diagram. The "Cut", "Copy", "Paste" commands of the
"Edit" menu are used to move or copy selected elements.

ICS Triplex ISaGRAF Inc. A-65

User's Guide

Find and replace

The "Edit / Find" and "Edit / Replace" menu commands are used to find and
replace texts in the diagram. Only complete names can be found. Research acts on
contacts, coils, block names, variables and labels. It cannot be used to find a string
in a comment text. The Replace command cannot be used to change the name of a
block. The research can be made upward or downward, starting at the current
selection position. It "loops" when the limits of the diagram are reached.

Displaying the execution order

When an FBD diagram includes backward loops, the execution order cannot follow
the single left to right / top to bottom method. In order to avoid confusion, use the
"Tools / Show execution order" command or press Control + F1 keys to display
the execution order that will be used at compiling time. Tags numbered from 1 to N
are displayed close to symbols that lead to an action (coils, set variables and
function blocks).

Entering symbols and texts

Double click with the mouse on an element to enter the associated symbol or text.
This applies to variables, contacts and coils, comment texts and labels. When used
on a contact or coil, this also allows to change its type (direct, negated...).

Dialog boxes including variable or block selection lists are normally used for text
input. If the "Manual keyboard input" mode is checked in the "Options" menu,
variable symbols and block names are entered directly in a single text edit box.
Enter new text and hit "Enter" key to validate it, or hit "Escape" key to exit
modification and close the text editing box. The text edit box used in "manual
keyboard input" mode cannot be closed with the mouse.

If the "Auto input" mode is checked in the "Options" menu, the variable symbol
must be entered immediately each time a new contact or colil is inserted. The symbol
must always be entered immediately when a variable or label is inserted.

Selecting function block type

Double click with the mouse on a block is used to change its type. The block type is
selected from the list of available operators, functions and function blocks. This
command also allows changing the number of input points in the case of a
commutative operator. (E.g. AND, OR, ADD, MUL...)

Getting free space

When you press the right button of the mouse in the FBD drawing area, a popup
menu is displayed. It contains the following commands that can be used to insert or
remove free space at the location of the mouse cursor:

Insert rows: This command inserts horizontal free space, made of 4 rows
according to the grid step, starting at the position of the mouse
cursor where popup menu is open.

Delete rows: This command removes unused horizontal space (rows) starting
at the position of the mouse cursor where popup menu is open.
This command cannot be used to remove FBD elements.

A-66

ICS Triplex ISaGRAF Inc.

User's Guide

When popup menu is open, a grey line in the FBD drawing area indicates where
empty space will be inserted or removed.

A.7.4 Display options

The commands of the "Options" menu are used to customise the drawing of the
FBD diagram on the screen.

= Tooltips

Use the "Options / Tooltips" command to hide or display variable comments as
tooltips in the whole diagram. The comments appear as a tooltips when the cursor
moves over the corresponding variable block. This option is available in off-line and
on-line modes.

= Layout customisation

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
graphic diagram. Use the check boxes in the "Workspace" group to display or hide
editor toolbars and status bar. Option of the "Document" group allows you to show or
hide points of the editing grid.

= Enable Power flow debugging

During simulation or on-line debugging of LD/FBD programs, power flows appear
highlighted red or blue in order to easily follow the logic flow. However, enabling
power flow debugging affects memory allocation on the target. You enable power
flow debugging in the FBD editor, while in off-line mode, from the Options menu by
choosing Enable Power flow debugging. This feature is enabled by default when
you install the Workbench.

ICS Triplex ISaGRAF Inc. A-67

User's Guide

The FBD editor animates this power flow (graphical links) according to the process
values. All "0" or "FALSE" state items appear BLUE. All non-zero values or "TRUE"
state items appear RED.

&

[h1=TRLE —

[h2=FALSE —]

&

(h3=F AL SE — —{ bd=F AL SE)

= Previewing page borders

When printed, the FBD diagram is split into folios according to the selected printer
and paper. You can choose to preview the border of each folio in the FBD editor.
While creating your diagram, previewing enables you to avoid placing a symbol
where it will be split on two pages.

The page borders are displayed as plain gray lines in the diagram, when the editing
grid is visible.

The FBD editor uses the last selected printer configuration to display the page size.
You must activate the document printer and select the right printer and paper before
viewing page borders in the FBD editor. Therefore, to preview a diagram, you must:

1. Runthe document generator.

2 Select the printer , paper size, and orientation.
3. Close the document generator without printing.
4. Open the FBD program.

5 Display the grid.

Q Options of the "Zoom" group allow you to select a main zoom ratio. You
can also use the "zoom" button in the editor toolbar to swap between default zoom
ratios.

Use the "Options / Font" command to select the name of the character font to be
used in all ISaGRAF graphic documents. When selecting font, font style and size are
not relevant and do not need to be specified. ISaGRAF graphic editors always
calculate the font size according to selected zoom ratio.

A-68

ICS Triplex ISaGRAF Inc.

User's Guide

A.7.5 Styles and modification tracking

The 1SaGRAF LD/FBD editor enables you to assign a graphic style to any
component of an LD/FBD diagram. A style is mainly defined as a special diagram
coloring. But ISaGRAF also uses styles to enable modification tracking in diagrams
for version control purpose.

Note that styles are visible during simulation or on-line debug, as colors (red and
blue) are used in that mode to highlight TRUE / FALSE states of spied variables.

ICS Triplex ISaGRAF Inc. A-69

User's Guide

Predefined styles
The following styles are pre-defined:

Normal Default drawing (black). For modification tracking, "normal” style
indicates that elements having that style are part of the original
diagram. "Normal" style elements are normally scanned during
execution.

Modified............. Elements marked as "modified" are painted in pink. For
modification tracking, the "modified" style is used to highlight
elements that have been added or changed after the original
release of the diagram. "Modified" style elements are normally
scanned during execution.

Deleted Elements marked as "deleted" are painted in grey, with dashed
lines. Such elements are not taken into account for the execution
of the diagram. This style is used to keep a track of elements
removed after the original release when version control is
required.

Custom In addition to predefined style, ISaGRAF LD/FBD editor allows you
to select any color to be applied to a part of the diagram. Such
elements are considered as having a "Custom" style. The use of
"Custom" style has no effect on the diagram execution at run time.

Use the commands of "Style" sub-menu in "Edit" menu to manually apply a style to
selected elements.

Modification tracking

The use of styles and the availability of the "Deleted" style allow automatic
modification tracking in an existing diagram. Use the "Mark modifications"
command in "Edit/Style" menu to enable or disable modification tracking.

When the "Mark modifications" option is set, all elements changed in or added to the
diagram are automatically set with "Modified" style. When an element is deleted,
using "Delete" or "Cut" commands, they are not visually removed from the diagram,
but simply marked with "Deleted" style". This enables the user to automatically keep
a trace of all modifications entered in the diagram.

Use the "Edit/Style/Remove all deleted items" to actually remove all elements
marked with "Deleted" style from the LD/FBD diagram. This command does not take
care of the current selection, and always applies to the entire diagram.

To "restore” one element marked with the "Deleted" style, select the desired
element and apply to it the "Normal" style, the "Modified" style or any "Custom"
style. Such operation may lead to invalid connections (more than one link connected
to the same input point) that will be detected during next program verification.

A.7.6 On-line help

To get help about function blocks from the LD/FBD editor:

. Select an existing function block on the LD/FBD diagram OR place the cursor
onit.

. Press on F1.

A-70

ICS Triplex ISaGRAF Inc.

User's Guide

Help about the function block is displayed. In case of custom "C" or IEC function or
function block, the help displayed is the "technical note" entered in the library editor
(text only).

A.7.7 Printing an FBD diagram

The "File / Print" command outputs the FBD diagram on printer. This command
automatically runs the ISaGRAF Document Generator to printout the FBD diagram.

ICS Triplex ISaGRAF Inc. A-71

User's Guide

A.8 Using the text editor

This section describes features and commands of the ISaGRAF text editor,
particularly when used to enter the source code of ST and IL programs.

A.8.1 Editing commands

L

The commands of the "Edit" menu are used to work on the edited text. Most of
these commands act on the characters currently selected in the diagram, or perform
an action at the current location of the caret.

Cut and paste

The DEL key can be used to remove the selected text. Use "Edit / Undo" command
to restore elements after a DEL command. The "Cut", "Copy", "Paste" commands of
the "Edit" menu are used to move or copy text in the program, or to insert pieces of
texts copied in the clipboard by other applications.

Find and replace

The "Edit / Find" and "Edit / Replace" menu commands are used to find and
replace texts in the program. Any character string can be found. Research can be
performed upward or backward, starting at the current location of the caret. It does
not "loops" when the limits of the program are reached.

Go to line

The "Edit / Go to line" command is used to move the caret to a specific line
number. This can be very useful to have access to a line with an error detected by
the ISaGRAF compiler in a ST or IL program, and referenced by a line number.

Insert symbol from dictionary

Use the "Edit / Insert variable" command to insert at the caret position the symbol
of a variable or object declared in the project dictionary. Symbol is selected through
the common variable selection box described in chapter "More about program
editors" in this document.

Insert file

The "Edit / Insert file" command inserts the whole contents of a file at the current
location of the caret. Note that only pure ASCII text files can be handled by this
command.

A.8.2 Syntax coloring

The text editor uses several colors for displaying language keywords, variable
identifiers, constant expressions... The set of colors applied for syntax coloring
cannot be customized.

A-72

ICS Triplex ISaGRAF Inc.

User's Guide

A.8.3 Options

The commands of the "Options" menu are used to display or hide editor toolbars,
and select the character font. The selected character font will be used for any text
editing in all ISaGRAF Workbench.

When used to enter the source code of a ST / IL program, the "Options / Show
keywords" command is used to show or hide a toolbox that groups the most
common keywords of ST or IL language. Click on a button in the toolbar to insert the
corresponding keyword or operator at the current location of the caret.

ICS Triplex ISaGRAF Inc. A-73

User's Guide

A.9 More about program editors

This chapter contains useful information about editing features, which are common
to all the ISaGRAF program editors. This mainly concerns links with other ISaGRAF
tools and common ISaGRAF dialog boxes.

A.9.1 Calling other ISaGRAF tools

X

=

Verify (compile) the program

The "File / Verify" command runs the ISaGRAF code generator to verify
the programming syntax of the currently edited program. In case of SFC language,
both level 1 and 2 are checked. When syntax verification is complete, the code
generator window must be closed to continue work on the program. If there is only
one program in the application (the edited one) the application code is generated if
no syntax error is detected. The "Options / Compiling options" command is used
to set compiling and optimising parameters. Refer to chapter "Using the code
generator" in this document for further information about compiling and code
generation.

Simulate or debug the application

The "File / Simulate" and "File / Debug" commands run the ISaGRAF
graphic debugger either in simulation or real connected mode, and re-opens the
edited SFC program in debug mode. Used in debug mode, no modification can be
entered in the program.

Editing the dictionary of variables

The "File / Dictionary" command is used to edit the dictionary of variables
for the current application and the current program. It also contains the entry points
to edit the user-defined words. The local declarations or defined words relate to the
currently edited program.

A.9.2 Parameters of the program

When the edited program is a function, a function block or a sub-program,
the "File / Parameters" command is used to define its calling and return parameters.
This command has no effect if the edited program is a SFC or top level program
from section Begin or End.

Sub-programs, functions or function blocks may have up to 32 parameters
(input or output). A function or sub-program always has one (and only one) return
parameter, which must have the same name as the function, in order to conform to
ST language writing conventions. The following dialog box is used to describe the
parameters of the sub program:

A-74

ICS Triplex ISaGRAF Inc.

User's Guide

Parameters - "Filter E
0K
S (L] ¥ commonc
ter min_value Cancel |
max_value
Filter

T
Mame: |command £ (* Boolean Inzert |
~Mode—————— " Analog
Delete |
& Call C Real
" Return Timer Arrange |

" Message

The list in the upper left side of the window shows the parameters, in the
order of the calling model: first the calling parameters, last the return parameters.
The lower part of the window shows the detailed description of the parameter
currently selected in the list. Any of the ISaGRAF data types may be used for a
parameter. The return parameters must be located after calling parameters in the
list. Naming parameters must conform to the following rules:

o the length of the name cannot exceed 16 characters

o the first character must be a letter

 the following characters must be letters, digits or underscore character
® naming is case insensitive

The "Insert" command is used to insert a new parameter before the
selected parameter. The "Delete" command is used to erase the selected
parameter. The "Arrange" command automatically rearranges (sorts) the
parameters, so that the return parameters are put at the end of the list.

A.9.3 Other commands of the "File" menu

The following commands are available in the "File" menu of all program
editors:

Open another program

The "File / Open" command allows the user to close the currently edited
program and start editing another program of the current project with the same
language. This function cannot be used to edit a program written in another
language. The new selected program replaces the current one in the editing window.

Printing the program

The "File / Print" command outputs the edited program on printer. This
command automatically runs the 1SaGRAF document generator to printout the
edited program and attached local variables.

ICS Triplex ISaGRAF Inc. A-75

User's Guide

For some graphic programs (SFC, FBD and Quick LD) You can also use
the "Edit / Copy drawing" command to copy in the clipboard the drawing of the
chart in metafile format, so that it can be pasted in other applications such as word
processors. For SFC programs, only the level 1 information (chart, numbering and
level 1 comments) appears on the copied metafile.

A.9.4 Updating the program diary

The diary file attached to the edited program may be manually entered
using the "File / Diary" command. The diary file is automatically updated with syntax
checking output messages each time that the program is compiled. Compiling
outputs are completed with the compiling date / time stamp.

= If the "Update diary" mode is selected in the "Options" menu of program
editors, the following dialog box is opened each time the program is saved on disk.

Update diary for program main E
Text note to be added to the diary hile - oK
with current date/time stamp .. | j __I

LCancel |

Ad|

<] | B

If OK button is pressed, the entered text note is then stored at the end of
the diary file with current date / time stamp. This feature is very useful for
maintenance of complete programs, as it provides useful help about the program life
cycle.

A.9.5 Selecting a variable from dictionary

& When editing a text program (ST or IL) the "Edit / Insert variable" allows
the selection of a declared variable name to be inserted at the current position of the
caret. When editing LD or FBD programs, variable selection is required for the
description of contacts, coils, block 1/0O parameters or FBD variable boxes. In both
cases, the following dialog box is open to select a declared variable:

A-76

ICS Triplex ISaGRAF Inc.

User's Guide

Select vanable
Scope: |(Global) -] [=2]=][&][=]eootean |
|hlandom |

random animation selection

bflash flash animation selection -
blead lead animation selection

bstart start/stop command

led]

led2

led3

ledd —
ledS

ledb -

(1] 4 I LCancel |

The "Scope" selection box is used to select between global and local
variables. The selection box on the right allows the selection of the data type. Small
icons beside the type selection box are buttons that can be used as shortcuts to
select most current data types:

...................... Boolean
...................... Integer / Real
'E:’ Timer

T Message

To select a variable, click on its name in the list. Its name and comment
are then displayed on the top of the list. Then press the "OK" button to confirm its
selection. It is also possible to directly enter a variable name in the edit control
without using the list.

A.9.6 The output window

The following commands are available in the Tools menu of all language editors.
They are used to display information in a small text list at the bottom of the editing
window, and use it for program browsing.

"Show compiler output” Displays in the output window the error
messages from the last compiling of the
edited program.

"Find in..." Finds occurrences of a text in the whole
edited program, and list them in the output
window. For SFC and FC languages, this
command searches in all level 2 programs.

ICS Triplex ISaGRAF Inc. A-77

User's Guide

"Hide output window" Closes the output list window

When error messages or occurrences are displayed in the output window, double
click on a line to directly move selection to the corresponding location. For SFC and
FC languages, this command opens corresponding level 2 programming window.

A-78 ICS Triplex ISaGRAF Inc.

User's Guide

A.10 Using the dictionary editor

The 1SaGRAF dictionary is an editing tool for the declaration of the internal
variables, 1/0 variables, function block instances, and "defined words" of the
application. The dictionary groups together the declared variables and function block
instances of the application, and the words defined as constant strings.

Variables, function blocks and defined words must be declared in the dictionary
before using them in source code. Variables and defined words can be used with
any of the automation languages: SFC, FBD, LD, ST and IL. Function blocks used in
FBD language do not have to be declared, because the ISaGRAF FBD and Quick
LD editors automatically declare the instances of the used blocks.

- Variables

The variables are sorted according to their range and type. Only variables of the
same type and the same range can be entered on the same input grid. These are
basic ranges for variables:

0 GLOBAL can be used by any program of the current project
@ LOCAL can be used by only one program

These are basic types of variables:

BOOLEAN ... true/false binary values
ANALOG...... real or integer values
'E:’ TIMER. time values

0 MESSAGE ... character strings

A name, a comment, an attribute, a network address and other specific fields identify
a variable. Here are the basic variable attributes:

INTERNAL memory variable

variable linked to an input device

variable linked to an output device
CONSTANT........ read only internal variable (with initial value)

Note: Timers are always internal variables. Input and Output variables always
have the GLOBAL range.

El Defined words

A defined word is an alias that can be used in any language to replace a text string.
The replaced text can be a variable name, a constant expression or a complex
expression. Defined words are sorted according to their range. Only defined words
of the same type and the same range can be entered on the same input grid. Here
are basic ranges:

D COMMON..... can be used by any program of any project

ICS Triplex ISaGRAF Inc. A-79

User's Guide

0 GLOBAL can be used by any program of the current project
@ LOCAL can be used by only one program

A name, a well defined block of ST text equivalence and a free comment identify a
defined word.

R Function block instances
The instances of the function blocks used in the ST and IL languages must be
declared in the dictionary. Because a function block has internal "hidden" data, each
copy of a function block must be identified. The following example shows the
function block "R_TRIG" (rising edge detection) defined in the library used for edge
detection on different variables. Each copy of the block must be identified by a
unique name. Using the library manager makes naming the type of block and
definition of its parameters:
Block name: R_TRIG
Parameters: Input=CLK

Output=Q

Using the dictionary editor makes naming the instances:
Instance name: TRIG_B1 Block name: R_TRIG
Instance name: TRIG_B2 Block name: R_TRIG
The declared instances may be used in ST programs:
TRIG_B1 (b1);
edge_b1l:=TRIG_B1.Q; (* bl variable edge detection *)
TRIG_B2 (b2);
edge b2 :=TRIG_B2.Q; (* b2 variable edge detection *)
Declared function block instances may be GLOBAL (known by any program in the
project), or LOCAL to one program. Function blocks used in FBD or LD languages
do not have to be declared, because the ISaGRAF FBD editor automatically
declares the instances of the used blocks.
b R _TRIG &
b2—] R TRIG_| two_edges
(* The function blocks always have the name of the block defined in the library.
The 1ISaGRAF FBD and Quick LD editors automatically declare an instance
each time a block is inserted in the diagram *)
Function block instances automatically declared by the FBD and Quick LD editors
are always LOCAL to the edited program.

A-80 ICS Triplex ISaGRAF Inc.

User's Guide

A.10.1

eeao

A.10.2

Network addresses

Network addresses are optional. A variable with a non-zero network address can be
spied by an external system (for example a process visualisation system) at run
time. More generally, the network address provides an identifying mechanism for
each run time communication system that cannot handle symbolic names. A network
address may be entered for each variable, during its complete description, when the
variable is created or modified.

The dictionary main window

The dictionary editing window shows a list of variables with same type and range.
The type and range of edited variables is always displayed in the title bar.

¢+° The editing window shows only main fields of variable description: nhame,
attribute and network address, and text comment. The full description of the selected
variable is always displayed in the status bar. Use the following buttons in the
toolbar to select the range of variable to be edited:

COMMON........cceuen.. can be used by any program of any project
GLOBAL ...cocuvvveee. can be used by any program of the current project
LOCAL .ooevvveeevieene can be used by only one program

Use the "Tab" control displayed with title bar to select the type of object to
be edited:

Booleans | IntegersMeslz | Timers | Messages | FB instances | Defined waords |

Matne A Addr. Comment

1 usethe text-input field on the left of the toolbar to search for a variable
prefix name. In this case, research is processed on the entire list, from the
beginning, based on the current selection. The "Edit / Find" command is also
available to search a text string in variable names and comments, and to move the
selection to this variable. Search is always case insensitive.

Managing variables

The available "Files" menu commands work on the entire selected class of
variables, function block instances or defined words. Use the "Other" command to
select the type and range of objects to be edited.

Printing variables

Use the "Files / Print" command to print the currently edited list of variables or
defined words, on a standard Windows™ printer device. Printing is made using the
ISaGRAF document generator. The printout includes the complete description of
each variable or defined word of the currently edited type.

ICS Triplex ISaGRAF Inc. A-81

User's Guide

s
iijiii

= d

Creating new variables

The "Edit / New" command allows the user to create new variables, function block
instances or defined words for the selected range and type. New variables are
inserted just before the variable currently pointed to by the selection bar. When this
command is run, an input box is opened to enter the variable description. When the
description is complete, pressing the "Store" button puts it onto the list. The input
box is automatically re-opened, so the user can enter other variables with the same
"Edit" command. Pressing the "Cancel" button of the dialog box breaks the variable
creation process.

Modifying existing variables

The "Edit" command of the "Edit" menu allows the user to modify the description of
the variable currently pointed at by the selection bar. When this command is run, an
input box is opened to modify the variable description. When description is
complete, pressing the "Store" button enables modification. The user also can press
"Next" and "Previous" buttons to extend the modification command to adjoining
variables. Pressing the "Cancel" button closes the dialog box without storing any
modification.

Cut and paste

The 1SaGRAF dictionary editing tool enables multiple-line selection. Many
commands are available to work on the currently edited list of variables. Below are
available "Edit" menu commands:

COPY oo, Copy the selected group of variables to the dictionary clipboard

CUT .o, Copy the selected group of variables and remove it from the
edited list

CLEAR............... Remove the selected group of variables from the edited list

PASTE................ Insert the dictionary clipboard before the selected variable

Copy/Cut/Paste functions can be used from one list of variables to another. They
cannot be used between list of different object types.

Sorting variables

The "Tools / Sort" command sorts the variables or defined words of the currently
edited list. The sorting order is given by the attributes of the variables:

o first the internal variables

e then the input variables

« finally the output variables

Variables with the same attribute are sorted into alphabetical order. Defined words
are always sorted into alphabetical order.

Setting network addresses

Network addresses are optional. A variable with a non-zero network address can be
spied by an external system (for example a process visualisation system) at run
time. A network address may be entered for each variable, during its complete
description, when the variable is created or modified. The "Tools / Renumber
addresses" command allows the user to set up network addresses of an entire
group of variables. When this command is run, it acts on the group of variables

A-82

ICS Triplex ISaGRAF Inc.

User's Guide

currently selected on the list. Entering a hexadecimal basis address (address for
the first variable of the group) results in network addresses of the variables of the
group being set with consecutive addresses. Entering a null basis address resets
to zero the network address of all the selected variables.

El Importing Boolean "true/false" strings

When editing defined words, the "Tools / Import true/false definitions" allows the
user to automatically define as language keywords the strings attached to Boolean
variables to represent TRUE and FALSE states. Such strings are normally defined
for debug formatting. They have to be specified as defined words if they are to be
used in programs. This command searches for Boolean true/false strings in the
declarations with the same range as the one currently selected for the editing of the
defined words.

A.10.3 Description of objects

A complete description must be entered for each variable, function block instance, or
defined word. Description fields are different for each type of object. The following
fields are common for any type of variables:

Name......cccocevveiiiniicnnn Name of the variable: first character must be a letter,
following characters must be letters, digits or '_".

Network address Hexadecimal network address (optional). When this field
is non-zero, the variable can be spied by external systems
at run time.

Comment......ccceevvveeennen. Free comment for variable description.

Retaincocovviveeiien, This option indicates that the variable must be saved on

backup memory.

These are other description fields for a Boolean variable:
Attribute......ccocceeiiiies Specifies an internal, constant, input or output variable.
"False" string.......c.c.c..... String used for false value at debug time.

"True" string ... String used for true value at debug time.

Set to true at init............. The initial value is TRUE if this option is checked,
otherwise the initial value is FALSE.

These are other description fields for an integer or real variable:
Attribute......ccooccveeiieees Specifies an internal, constant, input or output variable.
Formatcooevveiiiiiieen, Specifies an integer or real (floating) variable. Display

format used during debug can be selected.

String used to identify the physical unit at debug time.

Name of the conversion table or conversion function

attached to the variable (for input or output variables only)

Initial value.........cccee... Initial value of the variable (must have the same format as
the variable). If not specified, the initial value is 0.

Unit string
Conversion

'E' These are other description fields for a timer variable:

ICS Triplex ISaGRAF Inc. A-83

User's Guide

Attribute........occeeiiieees Specifies an internal or constant variable.
Initial value.........ccceene Initial value of the variable (time value). If not specified,
the initial value is time#0s.

G These are other description fields for a message variable:

Attribute........ccceniiinenn Specifies an internal, constant, input or output variable.

Maximum Length........... Specifies the maximum number of characters that can be
stored in the message.

Initial value.........ccceenee Initial value of the variable (length cannot exceed the

capacity of the message). If not specified, the initial value
is the empty string.

El These are the description fields for a defined word:

Name......cccooeiiniieeiieene Name used in ST source files: first character must be a
letter, following characters must be letters, digits or '_".

Define ..ooooveviiiiiiie, String according to ST syntax that replaces the defined
word during compiling. Example: Name = PI - Equivalence
=3.14159

Comment.....ccceevvveeennen. Free comment for defined equivalence

& These are the description fields for a function block instance:

Name......ccoevveiieeneennn Name of the instance, used in ST source files: first

character must be a letter, following characters must be
letters, digits or "'
TYPE o Name of the corresponding function block in the library.
comment......coeeeneennnn. Free comment for the function block instance.

A.10.4 Quick declaration

The "Tools / Quick declaration" command enables you to declare several variables
at the same time. Variables created by quick declaration are named using a
numbering convention. For that, you have to define:

- The index (number) of the first and the last variables,

- The text to be added before and after the number in variable symbols

- The number of digits used to express the number in variable symbols.

Additionally, you can specify basic attributes of created variables (internal, input or
output...), plus some properties depending on the variable type ("Retain" attribute,
integer or real format, message string maximum length).

You always need to define a text to be inserted before variable number, as a
variable symbol cannot start with a digit. When the "number of digits" is set to "Auto",
ISaGRAF formats the variable number on the minimum needed number of digits.
When number of digits is specified, 1ISaGRAF formats all numbers to the specified
length by adding leading '0' characters. Setting a fixed number of digits for variable
numbers can be very useful to prevent bad lexicographic sorting. Below are some
examples.

A-84

ICS Triplex ISaGRAF Inc.

User's Guide

Example: This setting for quick declaration:

— Mumbering:

From: 9 |Te: [11]
Digits:

— Symbaol:
Hame: |"I.I"ar |1ﬂt |:m

will create the three following variables:
Var9xx VarlOxx Varllxx

Example: This setting for quick declaration:

— Mumbering:
Digits: IZ'
— Symbaol:
Mame: |H}"‘|"'al | it |

will create 100 variables with names from MyVar001 to MyVar100
A.10.5 Modbus SCADA addressing map

ISaGRAF "network addresses" are often used to establish a link between ISaGRAF
system and a SCADA based on Modbus communication. In that case, the SCADA is
a Modbus master and ISaGRAF target acts as a Modbus slave. Network addresses
are used to create a virtual Modbus map for all ISaGRAF variables that must be
controlled from the SCADA. The "Tools / Modbus SCADA addressing map" is a
powerful to quickly create a Modbus virtual map with variables of the application.
The mapping tools shows two lists. The upper one is a segment (4096 locations) of
the Modbus map, showing mapped variables (the ones having a network address).
The lower list shows unmapped variables (without network address defined). The "0"
address cannot be used to map a variable.

Use the "Map" and "Remove" commands of the "Edit" menu to move a variable
from one list to another, and thus build the map. Same actions can be performed by
double clicking on a variable symbol in a list, to send it to the other list. At any
moment, you can use the "Segment" drop down list to view another segment of the
map.

The commands of the "Options” menu can be used at any moment to display
addresses either in decimal or in hexadecimal.

ICS Triplex ISaGRAF Inc. A-85

User's Guide

The "Edit / Find" commands is used to search for a declared variable, whether it is
already mapped or not.

A.10.6 Exchanging information with other applications

The 1ISaGRAF dictionary editing tool offers import/export functions in order
to exchange information with other applications, such as word processors,
spreadsheets, data base managers... These commands are grouped in the "Edit"
menu. The "Export text" command builds a pure ASCII text description of the fields
describing a set of edited objects, and stores this text either in the Windows
clipboard or in a file. Such information is typically used by another application. The
"Import text" command imports variable declaration description fields, described in
pure ASCII text format, stored either in the Windows clipboard or in a file, and
updates the currently edited list with imported fields. Such information is typically
produced by another application.

Exporting data

The following dialog box appears when the "Export text" command is run.
It enables the user to control the export mechanism.

Export vaniables I

~E t
Kpor oK

" Selected variables Cancel |
~Send to Browse |

" Clipboard Keywords |
 File: | |
Format: |Tah separators j|

Checking the "Complete list" choice indicates that the complete edited list
has to be exported. The current selection is ignored in this case. Checking the
"Selected variables" choice indicates that only highlighted variables will be
exported.

If the "Clipboard" option is checked, the exported information is stored, in
pure ASCII text format, in the Windows clipboard. The text is then available for
"paste" commands in other applications. If the "File" option is checked, the exported
text is stored in an ASCII file. The complete pathname of this file has to be entered.
The "Browse" command may be used to find an existing pathname.

Then the user chooses a format for the exported text. The available
formats are described in further sections. Pressing the "OK" button runs the export

A-86

ICS Triplex ISaGRAF Inc.

User's Guide

function. Pressing the "Cancel" button closes the dialog box and escapes from the
export command.

All the fields of the selected objects are stored in the exported text, in the
standard declaration order. The first line of the exported text contains the name of
the fields. Each object is described on one line of text. The "end of line" separator is
the standard MS-DOS sequence "0d-0a". The names used to identify the fields in
the first exported line may be changed, by pressing the "Keyword" button. This
command is described in further sections.

= Importing data

The following dialog box appears when the "Import text" command is run.
It enables the user to control the import mechanism.

Import vanables E

F
rom QK I
i | Cancel |

Browse |

Kepwords |

If the "Clipboard" option is checked, the imported information is taken
from the Windows clipboard, in pure ASCII text format. If the "File" option is
checked, the exported text is read in an ASCII file. The complete pathname of this
file has to be entered. The "Browse" command may be used to find an existing
pathname.

The import function automatically recognises the format (separators) used
in the imported text. The available formats are described in further sections.
Pressing the "OK" button runs the import function. Pressing the "Cancel" button
closes the dialog box and escapes from the import command. The names used to
identify the fields in the first imported line may be changed, by pressing the
"Keyword" button. This command is described in further sections.

The first line of the text must contain the name of the fields, according to
the order used in the following lines. Each object must be described on one line of
text. The "end of line" separator is the standard MS-DOS sequence "0d-0a". Fields
can appear in any order. If some fields are missing, they are automatically filled in
the imported object description by default values. If an imported object already exists
in the edited list, the user has to confirm that it will be overwritten. The object
description is then updated with imported fields. If some fields are missing, they are
not updated in the object description.

- Available text formats

Below is the list of available formats for export command. The import
command automatically recognises these formats.

ICS Triplex ISaGRAF Inc. A-87

User's Guide

o tab separators

Description: Fields are separated by tab characters.

Example: Name Attribute Comment
Level internal internal calculated water level
Alrm1 output main alarm output

e comma separators
Description: Fields are separated by commas.

Example: Name,Attribute,Comment
Level,internal,internal calculated water level
Alrm1,output,main alarm output

e semicolon separators
Description: Fields are separated by semicolons.

Example: Name;Attribute;Comment
Level;internal;internal calculated water level
Alrm1;output;main alarm output

e commas and quotes

Description: Fields are separated by commas.
Each field is written between quotes.

Example: "Name","Attribute","Comment"

"Level","internal","internal calculated water level"
"Alrm1","output”,"main alarm output"

= Keywords

The names used to identify the fields in the first imported or exported line
may be changed, by pressing the "Keyword" button. This command opens the
following dialog box:

Keywords for variable import / export [%]
Lancel |
Modify |

Text comment Comment
Network address Address
Attributes Attribute
Boolean 'False’ string False
Boolean 'True’ string True

Integer/real format Format
Integer/real unit string Unit Default |
Integer/real conversion Conversion —

Meszage maximum length Mazl ength

The window shows the list of object fields, and the associated keywords.
To modify a keyword, the user must select a field in the list and press the "Modify"

A-88 ICS Triplex ISaGRAF Inc.

User's Guide

button. Pressing the "Default" button restores the original list of keywords. Naming
the keywords must conform to the following rules:

* the name cannot exceed 16 characters

o the first character must be a letter

o the following characters can be letters, digits or '_' character

» the same name cannot be used for different keywords

Below are the standard keywords found in ISaGRAF:

ODbjJeCt NAME ..o Name
Text COMMENt........uvuviiiiiiiiriiiiiiiiriiiaeeeaeennns Comment
Network addresscceeveveevcieeiiiieeniieens Address

Attributes (internal, input, output) Attribute
Boolean 'False' string
Boolean '"True' string.........ccoccvveeviieeenieeenns

Analog format (real or integer) Format
Analog unit string i

Analog conversion name............ccocceeeennee Conversion
Message maximum length MaxLength
Function block library type.........cc.cccocveenee. Library
Defined word equivalence................c........ Equivalence

Internal attribute
Input attributeccoeeviieiieees

Output attribute..........ccooeviiiiiiiece

Constant attributecc.ccoovvveerenieiennns Constant
Real analog format..........cccoccveeviiiiiieennne Real
Integer analog formatcccocveeiiiieennes Integer

ICS Triplex ISaGRAF Inc. A-89

User's Guide

A.11 Using I/O connection editor

& i

The aim of the 1/0O connection operation is to establish a logical link between the 1/0
variables of the application and the physical channels of the boards existing on the
target machine. To make this link the user has to identify and set-up all the boards of
the target machine, and place I/O variables on corresponding I/O channels.

The list on the left shows the rack of the target machine, with board slots. A slot
may be free, or used by one I/O board or complex equipment. An order nhumber
identifies each slot. The rack may contain up to 255 boards. The list on the right
shows the board's parameters and the variables connected on the selected board. A
board may have up to 128 1/O channels. The total number of single /O boards
(including single equipments and boards of complex equipments) cannot exceed
255.

Icons

The icons displayed on the front face indicate the type and attributes of variables
that may be connected to the board channels. The ISaGRAF system does not allow
the connection of variables of different types on the same board. This is the meaning
of the used icons:

Boolean type

Integer/real type (both types of variables may be connected)
Message type

Inputs - no channel connected

Outputs - no channel connected

Inputs - at least one channel connected

QOutputs - at least one channel connected

Below are the icons used to show the type of I/O device installed on a slot:

Complex I/0O equipment
Real 1/O board
Virtual I/O board

Board parameter
Free channel
Connected channel

Moving boards in list

Use these buttons in the toolbar or "Edit / Move board up/down" menu commands
to move the selected 1/O board one line up or down in the main list. The "Edit /
Insert slot" command inserts an empty slot at the current position.

A-90

ICS Triplex ISaGRAF Inc.

User's Guide

A.11.1 Defining I/O boards

The "Edit" menu contains basic commands to define the selected board (set-up its
parameters), and to connect I/O variables to its channels.

Selecting I/O board type

Before connecting I/O variables to a board, the board identification must be entered.
A library of pre-defined boards is available on the 1ISaGRAF workbench. One or
more /O device suppliers may have compiled this library. The "Edit / Set
Board/Equipment" command is used to set-up board identification. This command
can be used to select either a single board, or complex I/O equipment from the
ISaGRAF library. It is also possible to double click on a slot to set the corresponding
board or equipment.

All the channels of a single board have the same type (Boolean, integer/real or
message) and direction (input or output). Real and integer variables are not
distinguished during /0O connection. Complex I/O equipment represents an 1/O
device with channels of different types or directions. Complex /O equipment is
represented as a list of single I/O boards. It uses only one slot in the rack list.

Removing a board

The "Edit / Clear slot" command is used to remove the currently selected board or
1/0 equipment. If variables are already connected to the corresponding channels,
they are automatically disconnected when clearing the slot.

Real boards and virtual boards

The "Edit / Real/virtual board" command sets the validity of the selected board or
complex /O equipment. The following icons are displayed in the rack list to show the
validity of a board:

| Real I/0 board
B, Virtual 1/0 board

In Real Mode, I/O variables are directly linked to the corresponding 1/O devices.
Input or output operations in the application program tie directly to corresponding
input or output conditions of the actual field I/O devices. In Virtual Mode, I/O
variables are processed exactly as internal variables. They can be read or updated
by the debugger, so that the user can simulate the I/O processing, but no real world
connection is made.

Technical notes

The "Tools / Technical note" command displays the on-line user's guide of the
selected board or complex equipment. The hardware supplier of the 1/O board writes
the board technical note. It contains all the information about 1/O board
management. It also describes the meaning of its parameters.

Removing connected variables

The "Tools / Free board channels" command disconnects all the 1/O variables
already connected on the selected board.

ICS Triplex ISaGRAF Inc. A-91

User's Guide

Defining comments for free channels

The "Tools / Free board channels" command disconnects all the I/O variables
already connected on the selected board.
A.11.2 Setting board parameters
To set the value of a board parameter, the user has to double click on its name in
the list on the right. It is also possible to select (highlight) it and choose the "Set
channel/parameter" command of the "Edit" menu. Parameters are listed at the
beginning of the list. The following icon is used to represent them in the list:
Aean| Board parameter
The meaning and input format of the parameter are designed by the supplier of the
corresponding I/O board or equipment. Use the "Tools / Technical note" command
or refer to your hardware manual for more information about board parameters.
A.11.3 Connecting I/O channels
To set the connection of a channel, the user has to double click on its location in the
list on the right. It is also possible to select (highlight) it and run the "Edit / Set
channel/parameter" command. The following icons are used to represent channels
in the list:
B, Free channel
L~ T Connected channel
The list contains all the variables, which match with the selected board type and
direction. Only variables, which are not yet connected, are listed here. The
"Connect" button connects the variable selected in the list to the selected channel.
The "Free" button removes (disconnects) the variable from the selected channel.
"Next" and "Previous" buttons are used to select another channel of the board. The
location of the selected channel is always displayed in the title of the dialog box.
A.11.4 Directly represented variables
Free channels are the ones, which are not linked to a declared I/O variable.
ISaGRAF enables the use of directly represented variables in the source of the
programs to represent a free channel. The identifier of a directly represented
variable always begins with "%" character.
Below are the naming conventions of a directly represented variable for a channel of
a single board. "s" is the slot number of the board. "c" is the number of the channel.
SIXS.C oo, free channel of a Boolean input board
%IDS.C .coeeennnn. free channel of an integer input board
%ISS.C v free channel of a message input board
%QXS.C v, free channel of a Boolean output board
A-92 ICS Triplex ISaGRAF Inc.

User's Guide

free channel of an integer output board
free channel of a message output board

Below are the naming conventions of a directly represented variable for a channel of
complex equipment. "s" is the slot number of the equipment. "b" is the index of the
single board within the complex equipment. "c" is the number of the channel.

%IXs.b.cC......... free channel of a Boolean input board
%IDs.b.c... free channel of an integer input board
%ISs.b.c......... free channel of a message input board
%QXs.b.c.......... free channel of a Boolean output board
%QDs.b.c.......... free channel of an integer output board
%QSs.b.c.......... free channel of a message output board

Below are examples:

$QX1.6 6th channel of the board #1 (Boolean output)
$ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.
A.11.5 Numbering

Use the "Options / Numbering" command to set numbering conventions. You can
specify the number used for the first slot and the number used for the first channel of
each board in the following dialog box:

Nombering |

First number for |

Slots:

EI Cancel |
U -

Channels:

As default, slot numbering starts at index "0", and channel numbering starts at index
npn

Warning: be very careful while changing numbering conventions as it has effect on
symbols used for directly represented variables and may lead to compiling errors if
directly represented I/O variables are used in existing programs.

ICS Triplex ISaGRAF Inc. A-93

User's Guide

A.11.6 Setting individual protections

The 1SaGRAF workbench provides a complete data protection system based on
hierarchised passwords. I/O connection can be globally protected by a password.
Additionally, ISaGRAF enables you to set individual protection to any 1/O channel.
This assumes that:

- Passwords are already defined in the password definition system (use the "Project
| Set password" command of the Project Management window) so that protection
levels are available for individual protection.

- You use protection levels with higher priority for individual protection compared to
global I/O protection.

When an /O channel has individual protection, a small icon is draw close to its
name in the 1/O connection window:

sm |5aGRAF - PROTECT - 1/0 connection [_ O] x|
File Edit Toolz Options Help

LIRS A=

i = XBlag n+ ﬂ @ bflash (* flash animsation selection *) -
= XB08 na+ B % blead (* lead animation selection *)

]
|I| @ brandom (* random animation selection *)
|I| LI @| bstart(* startiztop command *) ;I

Use the "Set protection” and "Remove protection" commands of the "Edit" menu
to set or remove an individual protection for selected channel. Both commands ask
you to enter a valid password so that a protection level can be attached to the
channel. Then, each time you want to change connection to a channel having
individual protection you must enter a password with sufficient priority level.

Warning: If a channel is protected with a level, and the corresponding password is
removed from protection system, and if no higher level password is defined,
connection to the channel cannot be changed anymore unless a new password with
sufficient level is defined.

A-94

ICS Triplex ISaGRAF Inc.

User's Guide

A.12 Creating conversion tables

Al21

A.12.2

The 1ISaGRAF workbench allows the user to create conversion tables. A conversion
table is a set of points used to define an analog conversion. A conversion table can
be attached to an analog input or output variable. A table creates a proportional
relationship between electrical values (read on input sensor or sent to the output
device) and physical values (used in application programming).

Conversion tables are edited through a dialog box run by the "Tools / conversion”
command in the ISaGRAF dictionary window

A defined conversion table can be used to filter values of any input or output analog
variable of the selected project. Attaching a conversion table to a variable is made
using commands of the ISaGRAF dictionary, the variable declaration editor. An input
or output analog variable must then be selected and its parameters edited. A
variable cannot be attached to a conversion table that is not already defined.

Main commands

The "Conversion tables" dialog box shows the list of defined conversion tables, and
contains push buttons for main commands, to edit an existing table (define its
points), to create a new table, and also to rename or delete a table. Press OK to quit
the "Conversion tables" dialog box and save them on disk.

Creating a new table

The "New" command allows the user to create a new conversion table. Up to 127
conversion tables can be created for each project. Only used tables (the ones
attached to analog variables) are inserted in the application executable code.
Naming a table must conform to the following rules:

* the name cannot exceed 16 characters

e the first character must be a letter

« the following characters can be letters, digits or '_' character

o the table name is case insensitive

Changing the contents of a table

The "Edit " command is used to enter the points of a table selected from the list. It is
also possible to double click on the name of the table. The "Edit" command is
automatically called when a new table is created. At least two points must be
entered for each table.

Entering points of a table

The "Edit" dialog box allows the user to define the points of a conversion table. The
box shows on the left side the list of points already defined. The lower right box
shows the defined table as a graphic curve. Using the box commands enters the
points. The user must comply with the number rules for the definition of points,
described at the end of this chapter. The box on the left always contains the list of
existing points for the currently edited table. The column on the left shows the
electrical (external) value of the points. The column on the right shows the physical

ICS Triplex ISaGRAF Inc. A-95

User's Guide

A.12.3

(internal) values. The user has to select a point on the list in order to modify its
values or to clear (remove) it. The last choice of the list ("... ...") is used to define a
new point. The box on the lower right shows the currently edited table as a graphical
curve. No axes or co-ordinates are shown, as this is a proportional representation of
the curve. This representation is useful as a quick check that the curve is properly
defined.

Defining a new point

When defining a new point, select the last entry ("... ...") on the list of points. This is
also the default mode when starting to define a new conversion table. The user has
to enter the electrical (external) and the physical (internal) values of each point.
Values are stored as simple precision floating point numbers. Remember that at
least two points have to be entered to define a curve. When both values are
entered, pressing the "Store" button adds the point to the table. A maximum of 32
points can be defined for each conversion table.

Modifying a point

To modify the values of an existing point, first select it from the list. The new
electrical (external) and the physical (internal) values of the point can then be
entered. Values are stored as simple precision floating point numbers. When both
values are entered, pressing the "Store" button updates the point in the table.

Clearing a point
Selecting it from the list and pressing the "Clear" button clears an existing point.
Remember that at least two points must be entered to define a table.

Rules and limits

The rules shown below must be followed when defining a conversion table. The
table can be used to convert both input and output analog variables:

e Two points cannot be defined with the same electrical value

e The curve must be continuously increasing or decreasing

e Two points cannot be defined with the same physical value

The following limits apply when defining conversion tables for a project:
* No more than 127 conversion tables can be defined in the same project
* No more than 32 points can be defined for the same conversion table.

A-96

ICS Triplex ISaGRAF Inc.

User's Guide

A.13 Using the code generator

A.131

The "Verify" and "Make" commands of the other 1ISaGRAF Workbench windows
automatically open the code generation window. The code generation window is not
automatically closed when the requested code generation operation ends, so that
the user still has access to all the code generation commands and options from the
window menu.

Main commands

The "Files" menu contains the commands for program syntax checking and code
generation.

Make application code

The "Make" command constructs the entire code of the project. Before generating
anything, this command checks the syntax of the declarations and programs. Any
error that cannot be detected during single program compiling is detected during
code generation. This applies to tables of conversion, 1/O variable connections and
links with the libraries. The code generation halts the compiling of a program when
errors are detected. This program must be corrected before continuing the code
generation. Programs which have already been checked (with no error detected)
and that have not been modified since their last "Verify" operation are not re-
compiled. Variable declaration verification and application coherence checking are
always processed. During program checking, the "Make" operation can be aborted
by hitting the ESCAPE key.

Note: If the declaration of a local variable of a program has been modified, this
program is verified. If a global variable has been modified, all the programs are
verified.

Program syntax checking

The "Verify program" command allows the user to verify only one program. The
selected program is compiled even if it has not been modified since its last
verification. The "Verify dictionary" command allows the user to verify the
declarations of all the variables of the project.

The "Verify all programs" checks the syntax of all the programs of the project, even
if some of them have not been modified. This command does not stop when an
error is detected in a program. It can be used to produce a complete listing of all the
errors remaining in programs of the project. This command may be aborted by
hitting the ESCAPE key.

Simulating a modification

The "Touch" command simulates a modification of the entire project's programs, so
that they are all verified during the next "Make" operation. The "Open" command is
used to open the last verified program. This command is very useful to directly
access a program where syntax errors have been detected.

ICS Triplex ISaGRAF Inc. A-97

User's Guide

A.13.2 Compiler options

The "Compiler options" command is used to set-up main parameters used by the
ISaGRAF Code Generator to build and optimise the target code. The aim of this
command is to select the type of code which has to be generated, according to
corresponding 1ISaGRAF targets, and to set-up the optimiser parameters according
to the expected compiling time and application run-time requirements.

The "Upload" button opens a second dialog box with other options that enable the
embedding of zipped source code to downloaded code, in order to enable the
"Upload" feature. Refer to "Upload" documentation for further explanations.

Selecting targets

The upper list shows the list of available target codes that can be produced. The
">>" sign is used to indicate the selected target(s). The ISaGRAF Code Generator
can produce up to 3 different codes in the same compiling operation. Use the
"Select" and "Unselect" buttons to set the list of required target codes, according to
your target hardware. Below are the standard ISaGRAF targets:

SIMULATE: This code is dedicated to the ISaGRAF Simulator on the
Workbench. The simulator cannot be run if this target is not
selected to produce the application code.

ISA86M............... This is a TIC code (Target Independent Code) dedicated to
ISaGRAF kernels installed on Intel based processors. The
processor type only concerns byte ordering in the generated code.

ISAB8M:.............. This is a TIC code (Target Independent Code) dedicated to
ISaGRAF kernels installed on Motorola based processors. The
processor type only concerns byte ordering in the generated code.

SCCiiiiiiiiieiinn. Selecting this target leads ISaGRAF compiler to produce
structured "C" language source code to be compiled and linked
with 1ISaGRAF target kernel libraries to produce an embedded
executable code.

CC86M: Selecting this target leads 1SaGRAF compiler to produce non
structured "C" language source code to be compiled and linked
with 1ISaGRAF target kernel libraries to produce an embedded
executable code. This selection is provided for compatibility with
ISaGRAF versions before V3.23, when structured "C" code
generation and integration were not supported.

Refer to your hardware manual to know the type of ISaGRAF target kernel installed
on your PLC. Other target types (machine code, C source code...) may be
supported in future releases of the ISaGRAF Workbench.

SFC processing

Check the "Use embedded SFC engine" box to enable the use of the ISaGRAF
SFC engine. This mode should be preferred as it leads to higher run time
performances. However, the target engine may be missing on some particular
implementations of the 1ISaGRAF target, of more commonly on customised targets
based on ISaGRAF code post-processing. In this case you may have to remove this
option and let ISaGRAF compiler translate SFC charts into low level instructions.

A-98

ICS Triplex ISaGRAF Inc.

User's Guide

Refer to your hardware documentation for more information about the use of this
option.

= Optimiser options
Below are the parameters, used by the ISaGRAF Code Generator to optimise the
target code that can be set from the "Compiler options" dialog box. The "Default"

button is used to remove all optimising options, in order to reduce the compiling
time.

== When the "Run two optimiser passes" option is set, the ISaGRAF Code
Optimiser is run twice. Optimisations made during the second pass are generally
less significant than the ones made in the first pass.

= When the "Evaluate constant expressions" option is set, the compiler
evaluates constant expressions. For example, the numerical expression "2 + 3" is
replaced by "5" in the target code. When this option is not set, constant expressions
are calculated at run-time.

== When the "Suppress unused labels" option is set, the Optimiser
simplifies the system of jumps and labels of the programs, in order to suppress
unused target labels or null jumps.

== When the "Optimise variable copying" option is set, the use of temporary
variables (used to store intermediate results) is optimised. This option is commonly
used with the "Optimise expressions" option. When this option is set, the Optimiser
re-uses the result of expressions and sub-expressions, which are used more than
once in the program.

== When the "Suppress unused code" option is set, the Optimiser
suppresses the code which is not significant. For example, if the following
statements are programmed: "var := 1; var := X;", the corresponding generated
code is only: "var := X;".

= When the "Optimise arithmetic operations" option is set, the Optimiser
simplifies arithmetic operations according to special operands. For example, the
expression "A + 0" will be replaced by the "A". When the "Optimise Boolean
operations" option is set, the Optimiser simplifies Boolean operations according to
special operands. For example, the Boolean expression "A & A" will be replaced by
"A".

= When the "Build binary decision diagrams" option is set, the Optimiser
replaces the Boolean equations (mixing AND, OR, XOR and NOT operators), by a
reduced list of conditional jump operations. The translation is operated only if the
expected execution time of the jump sequence is less than the one expected for the
original expression.

The following table summarises the expected optimisation and requested compiling
time corresponding to each parameter:

ICS Triplex ISaGRAF Inc. A-99

User's Guide

Gain (performances) compiling time
Run 2 passes XXXX tntrieesineeeeireeesnreessieeeeeeneas *)
Optimise constant eXpressions XXXXXXXX c..eeerveerreereeeriveenieennens XXXX
Suppress unused labels XXXX cereveanens s XXXXXXXX
Optimise variable copying XXXX ceevreeesinneeesireeeenreeesnneeenneeas XXXXXXXX
Optimise expressions XXXX tetreeeinineeesireeeenreeesaneeeneneas XXXXXXXX

Suppress unused code XXXX trtrerireanteenireenreesineennee e
Optimise arithmetic operations ~ XXXXXXXX
Optimise Boolean operations XXXXXXXX .
Build binary decision diagrams = XXXXXXXXXXX ..ceeeervreeesveessnneenns XXXXXXXXXXX

(*) The compiling time is also multiplied by 2.
A.13.3 Producing C source code

The ISaGRAF workbench enables the production of source code in "C" language. In
this case, the whole contents of the application, including SFC chart description,
data base definition and sequences of code are generated in "C" source code
format. There are two possibilities, proposed as two styles of generated code:

CC86M (C source code - V3.04) produces non-structured "C" source code.
This style should be selected if your target software is based on
ISaGRAF release previous to 3.23.

SCC..vvvieeeieen. (structured C source code) produces a structured "C" source
code. This style should be preferred if your target software is
based on ISaGRAF release 3.23 or later.

The following two files are created in the project directory:
APPLI.C common source code of the application
APPLIH common "C" language definitions

In the case structured "C" source code generation, a ".C" source file and a ".H"
definition file are created for each program of the application, in addition to common
"APPLI.C" and "APPLIL.H" files. These files must be compiled and linked to the
ISaGRAF target libraries in order to produce the final executable code. Refer to the
"ISaGRAF /0 development toolkit User's Guide" for further information about
recommended implementation techniques.

Note: Some debugging features such as application downloading, on-line
modification and breakpoints are no more available when the 1SaGRAF application
is "C" compiled.

A.13.4 Viewing information

The "Edit" menu contains the commands for viewing the different text files built
during code generation or syntax checking operations on the code generator
window. The code generation window is a text area that contains messages during
code generation or syntax checking operations. All information is stored on the disk
so it can be examined using the "Edit" menu commands.

A-100 ICS Triplex ISaGRAF Inc.

User's Guide

A.13.5

Editing commands

The "Clear Screen" command is used to clear the window text area. The window is
automatically cleared before each code generation or syntax checking operation.
The "Copy" command is used to copy the displayed text in the clipboard of
Windows, so it can be used by other applications such as ISaGRAF text editors.

Viewing compiler output messages

The "Execution messages" command shows all the messages displayed during the
last "Make" or "Verify" operation on the window text area. This applies to all the
error messages.

Other choices of the "Edit" menu allow the user to monitor auxiliary text files created
during syntax verification and code generation. These files are not usually used for a
common ISaGRAF project.

Defining resources

The "Resources" command of the "Options" menu allows the user to
define resources. A resource is any user-defined data (network configuration,
hardware setting...) of any format (file, list of values) which has to be merged with
the generated code, in order to be downloaded with it in the target PLC. Such data is
not directly operated by the ISaGRAF kernel, and is commonly dedicated to other
software installed on the target PLC. Refer to your hardware manual for further
information about available resources.

The resource definition file

The resources are defined in a "Resource definition file" stored with
other files of the ISaGRAF project. This is a pure ASCII text file, processed by the
ISaGRAF Resource Compiler. This compiler is automatically run when the
application code is built. This section explains the syntax of this file. The resource
definition file uses lexical rules of the ST language. Comments, beginning with "(*"
and ending with "*)" characters can be inserted anywhere in the text. Strings are
delimited by single apostrophes. Refer to the second part of this manual for more
explanations about the lexical formats used to enter numerical values.

Language reference
Below is the list of keywords and statements used in a resource definition

file.

[ULONGDATA

Meaning: Specifies a resource, which is a list of integer values. Values are
stored in target code as unsigned 32 bit integers. Values are stored in
the order specified in the resource definition file. Values must be
separated by comas. The name of the resource cannot exceed 15
characters.

Syntax: ULONGDATA '<resource name>'

ICS Triplex ISaGRAF Inc. A-101

User's Guide

BEGIN
...target_selection...
...list of values...

END

Example: ULongData 'MYDATA'
Begin

0, -1, 100_000, (* decimal *)
16#A0B1, 2#1011 0101 (* hexadecimal, binary *)
End

VARLIST

Meaning: Specifies a resource which is a list of variable addresses. Variables
are identified by their name in the resource definition file. Variable
addresses are stored in target code as unsigned 16 bit integers.
Addresses are stored in the order specified in the resource definition
file. Variables must be separated by comas. The name of the resource
cannot exceed 15 characters.

Syntax: VARLIST '<resource_name>'
BEGIN
...target_selection...
...list of variable names...
END

Example: VarList 'LIST'
Begin

Varl00, MyParameter, Command, Alarm
End

BINARYFILE

Meaning: Specifies a Binary File resource. The source data is stored in an MS-
DOS file. The target resource definition is completed with a target
pathname. The ISaGRAF Resource Compiler does not convert ends
of line characters. The name of the resource cannot exceed 15
characters.

Syntax: BINARYFILE '<resource_name>'
BEGIN
...target selection...
FROM '<source_pathnames>'
TO '<destination_pathnames>'
END

Example: BinaryFile 'MYFILE'
Begin

From 'c:\user\config.bin'
To '/dd/user/appl/config.dat’

A-102 ICS Triplex ISaGRAF Inc.

User's Guide

End

TEXTFILE

Meaning:

Syntax:

Example:

Specifies a Text File resource. The source data is stored in an ASCII
file. The target resource definition is completed with a target
pathname. The 1SaGRAF Resource Compiler according to the target
host system conventions converts ends of line characters. The name
of the resource cannot exceed 15 characters.

TEXTFILE '<resource_name>'
BEGIN

...target selection...

FROM '<source_pathnames>'

TO '<destination pathnames'
END

TextFile 'MYFILE'
Begin

From 'c:\user\config.bin'
To '/dd/user/appl/config.dat’
End

TARGET

Meaning:

Syntax:

Example:

Specifies the name of a target code that has to include the resource.
Refer to the previous section (compiler options) for further information
about handled targets. The "Target" statement can appear more than
once in the same resource block, in order to select several targets.
This statement cannot be used if the "AnyTarget" statement is
specified.

TARGET '<target name>'
BinaryFile 'MYFILE'
Begin
Target 'ISA86M'
Target 'ISA68M'

End

ANYTARGET

Meaning:

Syntax:

Specifies that the resource must be merged to all the target codes
built by the Code Generator. The 1SaGRAF Code Generator can
produce several target codes during the same "Make" command. This
statement cannot be used if one or several "Target" statements are
specified.

ANYTARGET

ICS Triplex ISaGRAF In

C. A-103

User's Guide

Example: ULongData 'MYDATA'

Begin
AnyTarget

End

FROM

Meaning: Specifies the source pathname (on the PC where the ISaGRAF
Workbench is installed) of a BinaryFile or TextFile resource. The
characters used to isolate the components of the pathname (drive,
directory, prefix, suffix) must conform to the MS-DOS system
conventions.

Syntax: FROM '<target pathnames>'

Example: BinaryFile 'MYFILE'
Begin

From 'c:\user\config.dat'
To '/dd/user/appl/config.dat’

End

TO

Meaning: Specifies the destination pathname (on the target system) of a
BinaryFile or TextFile resource. The characters used to isolate the
components of the pathname (drive, directory, prefix, suffix) must
conform to the target host system conventions.

Syntax: TO '<target pathname>'

Example: TextFile 'MYFILE'
Begin

From 'c:\user\config.dat'

To '/dd/user/appl/config.dat’
End

- Example
Below is a complete example of a resource definition file:

(* resource definition file ¥*)

ULongData 'DATAL' (* 1list of values *)
Begin
Target 'ISA86M' (* for this target only *)
1, 0, 16#1A2B3C4D, +1, -1 (* numerical values *)
End
VarList 'VLIST1' (* list of variables *)
Begin
Target 'ISA86M' (* for this target only *)

A-104 ICS Triplex ISaGRAF Inc.

User's Guide

Valvel, StateX, Command, Alrml (* variable names *)

End
BinaryFile 'FILE1l' (* binary file resource *)
Begin
AnyTarget (* dedicated to all targets *)
From 'c:\user\updatef.bin' (* source file on PC *)
To 'updatef.cfg' (* target file on PLC ¥*)
End
TextFile 'FILE2' (* text file resource *)
Begin
Target 'ISA68M'
From 'c:\nw\nwbd.txt' (* source file on PC *)
To '/nw/dat/nwbd’ (* target file on PLC ¥*)
End
= Resource compiling

If resources have been entered in resource definition file, a dialog box
appears at the end of ISaGRAF code generation. Press the "Start compile" button
to run resource compiler. Output messages and errors will be displayed in the main
control. Press "Exit" to avoid resource compiling. In this case, resources will not be
added to the ISaGRAF code.

- Implementation

The number of resources, the size of data rows and files are not limited by
ISaGRAF. Resources are stored at the end of the generated code, with a resource
directory. Below is the format (using C notations) of the resource directory format:

_ RESOURCE:
long nbres; /* number of defined resources */
{
char name[16]; /* resource name */
long type; /* resource data type */
long size; /* exact size of data block */
uint32 data;
uint32 path offset; /* points to a string */

} /*nb of records */

}

Below are the possible values of the "type" field:
1 = binary file
2 = text file
3 = ulong data (path_offset field is not used in this case)
4 = variable list (path_offset field is not used in this case)

For text files, end of line characters are translated by the resource
compiler, according to the target system conventions. All pointers are 32 bit offsets
from the address of the corresponding structure. All resource names and pathnames
are NULL terminated strings. Pathnames and data follow the resource directory.

ICS Triplex ISaGRAF Inc. A-105

User's Guide

A.14 Cross References

The 1SaGRAF workbench includes a cross-reference editor, which provides user
with a total view of the declared variables in the project's programs, and where they
are used. The aim of the cross reference is to list all the variables declared in the
project, and to localise, at the source of each program the parts of source code
where those variables are used. The cross-references are very useful for a global
view of one variable life cycle. They help localise side effects, and reduce the time to
understand the project during the maintenance. The cross-references may also be
used for a global view of the complete dictionary of a project, so unused variables
are easily found and the complexity of the project measured.

The list on the left shows the declared objects of the project (programs, variables
and defined words), and the library elements (functions and function blocks)
referenced in the project. The list on the right shows the occurrences in the
programs of the object currently selected in the first list.

The description of an occurrence includes the program name, the number of the FC
or SFC step, transition or test, plus line number for text languages or co-ordinates
for LD or FBD diagrams. For quick LD diagrams, the description is completed with
the number of the rung. If the variable is used as an output (on a coil) the rung
number is followed by a star ("*") character.

Set the "Show unused variables" option from the "Options" menu to display also in
main list variables that are not used in the application programs.

When performing a cross reference search for variables, you can search for a
specific varaible by typing its name and clicking OK or search for all variables by
clicking All.

Object type selection

Because a project can group a huge number of declared objects, the combo box in
the editor toolbar is used to select the type of objects, which must be listed in the
window. This allows the user to have access to selected information.
Each time the cross-references are re-calculated, the selection is reset to "All
objects" in order to present the complete list.

- Re-calculate cross-references
The "File / Re-calculate" command can be used at any time to update the cross
references according to the modifications entered in other 1SaGRAF editing
windows.

= EXpOI’t cross-references
The "Tools / Export" command is used to write the complete listing of the cross-
references in an ASCII text file. This file can then be opened with other applications
such as Windows Notepad or word processors.

El. Dictionary errors
The "Edit / Dictionary errors" command displays in a dialog box the list of errors
detected when the project dictionary was loaded.

A-106 ICS Triplex ISaGRAF Inc.

User's Guide

EE | Statistics

The "Tools / Statistics" command displays in a dialog box the number of objects
and variables declared in the project, according to variable types and attributes. A
particular application of this command is to know the number of I/O variables
declared in the project, in order to ensure that it can be compiled, if a limited version
of the ISaGRAF Workbench is used.

-
NI

Search in object list

The "Edit / Search" command enables you to directly select an object in the editor
list. The searched object cannot be found if it is not actually listed (when using a
selected display). It is recommended, before searching for an object, to activate the
"All" selection in the toolbar.

Open program
The list on the right contains the occurrences of the selected object in the source
files and 1/0O connection of the open project. The "Edit / Open program" command
enables the user to directly open a program where the object appears. It is also
possible to double click the mouse on an occurrence (in the occurrence list) to open
the corresponding program.

ICS Triplex ISaGRAF Inc. A-107

User's Guide

A.15 Using the graphic debugger

ISaGRAF includes a complete graphic and symbolic debugger. The "Debug"
command of the program management window runs the debugger to control the
application downloaded in the target PLC. In this mode, the debugger communicates
with the target system via hardware link. The "Simulate" command of the program
management window simultaneously runs the debugger and a complete target
simulator. This enables the user to test his application when the target's /0O system
is not yet complete. The debugger window contains the commands to control the
entire application.

When the debugger starts, and if the application in the target PLC is the same as the
one on the workbench, it automatically opens the program management window,
in debug mode. Commands of this window may be used to open other ISaGRAF
windows (graphic and text editors, dictionary, lists of variables, I/O connection...). All
windows opened during a debug session operate in "debug mode", meaning that
the editing command is disabled. Displayed program components (steps, transitions,
variables...) are shown with their current run time status or value. Double clicking on
an object changes its status or value in the target application.

When running the debugger in simulation mode, communication with the ISaGRAF
target system is stopped. The debugger only communicates with the simulator
window. Because the target system does not exist in this mode, the "download",
"stop" or "activate" commands are not available on the debugger menu.

A.15.1 The debugger window

The debugger window only contains information about the complete application
status. It is linked to other ISaGRAF windows creating a complete interactive debug
system. Detected run time errors are displayed in the bottom area of the debugger
window. Commands from the "Options" menu are used to hide, show or clear the
list of errors.

The control panel (area under the debugger menu) shows the global status of the
target application, and information about the execution cycle timing. The list of
possible target status is as follows:

Logging: ..cccooveviieieeen, Debugger establishes communication with the target
system.

Disconnected:................ Debugger cannot communicate with the target system.
Ensure connection cable and communication parameters
are valid.

No application:............... Connection is OK, but no ISaGRAF application currently
exists in the target system. Download an application.

Application active:......... Connection is OK and an active application exists in the

target system. Debugger is now establishing the
communications with this application, if it is the same as
the one on the Workbench.

RUN:. Target application is in "Real Time" mode.

STOP:.. Target application is in "Cycle to Cycle" mode.

BreakPoint:cccceeee. Target application is in "Cycle to Cycle" mode, because a
breakpoint is encountered.

A-108

ICS Triplex ISaGRAF Inc.

User's Guide

A.15.2

il

Fatal Error:cccoeeenen. Target application failed because a serious error occurred.

Information on the run time cycle timing is as follows:

Allowed:.......cccovvrivinnene programmed timing.

Current: exact timing of the last complete execution cycle.

Maximum: ... maximum timing detected since the application started.

overflow:cccceeviveennnen. number of execution cycles detected with timing greater
than the allowed timing.

All time values are given in milliseconds. Time values are not displayed when

debugger is used in simulation mode.

Controlling the application

The "File" and "Control" menus contain the commands for the installation and the
control of the currently edited ISaGRAF application on the ISaGRAF target system.

Note: Some of these commands are not available during simulation, because
the 1SaGRAF Workbench automatically installs the application processed by the
simulator.

Stop the target application

The "File / Stop application" command stops the execution of the application
currently active in the ISaGRAF target system.

Activate the target application

The "File / Start application" command runs the application existing in the target
system. When an application is downloaded, it is automatically started, so that the
"Start" command does not have to be used. The "Start" command is typically used
after a "Stop" command.

Note: the target application must be stopped (inactive) before it is possible to
download a new application.

Download the application

The "File / Download" command is used to download the application code in the
target system. Select the type of code to be downloaded, according to the target
system processor and the application options.

Display version number

The "File / Get version number" command is used to display complete identification
of both Workbench and target applications. The Workbench application is the one
currently open on the ISaGRAF Workbench. The target application is the one
executed in the target ISaGRAF PLC. The following items are displayed:

VERSION:ccovviiiiine This is the version number of the application code. The
code generator has calculated this number.

DATE: ..o This item shows the date and time when the code has
been built.

CRCoiiiiiiiieee e This is a checksum calculated with the contents of the

table of symbols. The code generator has calculated this

ICS Triplex ISaGRAF Inc. A-109

User's Guide

b

number. This value depends on the contents of the
dictionary of variables.

Note: The "Get version number" command is also available during simulation.
In real debug mode, this command cannot be used if the target PLC is not
connected.

On-line modification

The "File / Update application" command enables the user to achieve "on-line
modification" of the running target application. This command is detailed in further
sections of this chapter. It is not available when the debugger is used in simulation
mode.

Real time mode

The "Control / Real time" command is not available when no application is active. It
sets the target application in normal "real time" mode: Normal mode: the execution
cycles are triggered by the programmed cycle timing.

Cycle to Cycle mode

The "Control / Cycle to cycle" command is not available when no application is
active. It sets the target application in normal "cycle to cycle" mode: In this mode,
cycles are executed one by one, according to the "Execute one cycle" commands
made by the user from the debugger menu.

Execute one cycle

When target is in cycle to cycle mode, the "Control / Execute one cycle" command
runs the execution of one cycle.

The cycle timing

The "Control / Change cycle timing" command enables the user to modify the
programmed cycle timing. This time is titled as "Allowed" in the debugger control
bar window. The "Cycle to cycle" mode should be set before modifying the cycle
timing. The cycle timing is entered as an integer number in milliseconds.

Remove all breakpoints

The "Control / Clear all breakpoints" command removes all the breakpoints
currently installed (encountered or still active) in the whole application. Existing
breakpoints are not automatically removed when the debugger window is closed.

Unlock I/O variables

The "Control / Unlock all IO variables” command unlocks all the 1/O variables
currently locked in the application. When an I/O variable is locked, no input or output
status change is made to the corresponding I/O device. Variables attached to the 1/0
can still be written by the application or by the debugger. Currently locked /O
variables are not automatically unlocked when the debugger window is closed.

A-110

ICS Triplex ISaGRAF Inc.

User's Guide

A.15.3

A.154

Options

The "Options" menu contains the options to control the information displayed in the
debugger window.

The communication parameters

The communication timing parameters can be adjusted when the debugger is active.
Only communication time-outs can be set here. Other communication parameters
(baud rate, parity...) must be set from the "Debug" menu of the Program
Management window.

The "Communication time-out" is the time left for the target system to begin the
answer to one workbench request. The "Cyclic refresh duration" is the time period
required for the "read" requests to be sent by the debugger in order to refresh data
in the opened windows.

All the time values are displayed and entered as integer numbers in milliseconds.
The communication timing parameters cannot be set when the debugger is used in
simulation mode.

Display options

The "Show cycle timing" option enables the user to hide or show the cycle timing
values in the debugger control bar. When this option is set, all the cycle timing
components (allowed, current, maximum, overflows) are displayed and refreshed.
Disabling this option reduces the debugger communication burden.

When the "Show errors" option is set, detected run time errors are listed in the
bottom area of the debugger window. When this option is disabled, the error list is
closed. Removing this option reduces the debugger display and communication
burden. The "Options / Clear errors" command clears the list of run-time errors
currently displayed in the debugger window.

The "Options / minimise window" command reduces the size of the debugger
window so that it is shown as a small, always on top, panel containing only the
application status and graphic buttons for most commonly used commands.

"Write" commands

The ISaGRAF symbolic debugger offers many commands to change the value or
status of the application components. Selecting the component to be changed is
done by double clicking on its name or its drawing in an editing window, when the
debugger window is opened.

Variables

A variable status is changed by double clicking on its name in one of the following
windows:

e Dictionary

e Lists of variables or time diagrams

e LD or FBD Programs

¢ |/O connection

The following commands are offered in the debug dialog box:
o Write the variable to a new value

ICS Triplex ISaGRAF Inc. A-111

User's Guide

e Lock the variable (for I/O variables only)
e Unlock the variable (for locked I/O variables only)
e Start or stop a timer variable (set automatic refresh mode)

Symbolic values used to represent Boolean FALSE and TRUE values are the
strings defined for that specific Boolean variable in the dictionary. The analog value
specified for a "Write" command must be entered in an integer or real format,
according to the variable definition in the dictionary. The string specified for a "Write"
command for a message cannot be longer than the message capacity attached to
that specific variable in the dictionary.

SFC objects

To observe a control operation on a SFC program while debugging the application,
commands of the "File" menu are used in the Program Management window. The
SFC program must be selected from the list of programs. The following commands
are available:
Start SFC program: Enables the selected program by putting a SFC token into
each of its initial steps.

Kill SFC program:........... Kills the selected program by removing all existing tokens.
Freeze SFC program: Suspends the execution of the selected program.
Restart SFC program: ... Restarts a frozen (suspended) program.
For child programs, these commands correspond to the "GSTART", "GKILL",
"GFREEZE" and "GRST" functions in the programming language.
A control operation can be seen in a SFC step when debugging the application by
double clicking on its graphic representation in the SFC editing window. The
following commands are available in the debug dialog box:
o Install a breakpoint on the step activation
o Install a breakpoint on the step de-activation
e Clear breakpoint added to the step
Note: Activation and de-activation breakpoints cannot be added to the same
step.
A control operation can be seen in a SFC transition when debugging the application
by double clicking on its graphic representation in the SFC editing window. The
following commands are proposed in a debug dialog box:
e Add a breakpoint on the transition clearing
e Clear a breakpoint added to the transition
e Manually clear the transition (move or add tokens)
Conditional clearing: a token is created on the steps following the transition. The
tokens existing in the preceding steps are removed. Unconditional clearing: a
token is created on the steps following the transition. The tokens existing in the
preceding steps are not removed.

A-112 ICS Triplex ISaGRAF Inc.

User's Guide

A.15.5 Display the lock state and device value

When Boolean and analog I/Os are locked, the workbench reads their "lock" state
and actual device value. Actual device values include forced values. The "lock"
state of 1/Os is displayed in the following editors:

- FBD editor

- LD editor (Quick LD)

- Dictionary

- List of variable (spy list)

In the FBD and LD editor, when an 1/O is locked, its name is marked with the "o"
symbol. The following LD example shows the MainPw I/O marked with the locked
symbol:

(*Control light command according to both left and right switches *)

1] z Ml P Swl_eft SwRinht CmLight
I | | RY |
Swl_eft SwRinht
{1 | |

MainPW is locked

The following FBD example shows the counter I/O marked with the locked symbol:
counter is locked

I [balink

RUN

|
| (EE Fovele o3¢ RETURN

[wcounter=3 ==

(i -

In the Dictionary and List of variables (Spy list), in addition to displaying the "lock"
state and the application value for an I/O, the actual device value is also displayed.
This information is displayed using the following syntax:

AppValue (= Device value).

s Ottt

The following example, in the dictionary, shows the locked counter variable having
an application value of 3 and a forced device value of 127:

ICS Triplex ISaGRAF Inc.

A-113

User's Guide

j I5aGRAF - BLINKALL:[untitled] - Lizt of variables =] E3
File Edt Options Help

DR@| =M Q)

Walue Comment
FBOC FALSE firgt FBD wariable
counter (ProgFED) 3s127)

FEL= TR

d of |igk>

Counter is locked and forced to 127

A.15.6 On-line modification

The "On-line modification" feature enables the user to modify the application while
the process is running. This is sometimes necessary for chemical processes where
any interruption may jeopardise production or safety. This function should be used
very carefully. 1ISaGRAF may not be able to detect all possible conflicts generated
by user defined operations as a result of these on-line changes.

Code sequences

As ISaGRAF offers many possibilities for access to variables, programs or 1/0
boards from the debugger, the "On-line modification" function described here applies
only to the code sequences modification. A sequence of code is a complete set of
ST, IL, LD or FBD instructions executed in a row. In a "beginning of cycle" or "end of
cycle" program, a code sequence is the entire list of instructions written in the
program. In a SFC program, a code sequence is the Level 2 programming of one
step or transition. The "On-line modification" consists of replacing one or more code
sequences, without stopping the PLC execution cycle. As the control of the SFC
tokens is very critical, it is not possible to modify a SFC structure, to add,
renumber or remove a step, a transition or a SFC program.

Variables

As the variable database is a very critical part of the application, it can be accessed
at any time by other processes (on multitasking PLC). It is also possible to modify
variable values from the debugger. Therefore, ISaGRAF does not allow the user to
add, rename or remove a variable on-line. Anyway, it is possible to modify the way
a variable is used in the application. It is also possible to reserve "unused" internal
or /O variables in the first version of the application, so that future modifications can
make use of them.

They are different styles of variables in ISaGRAF target database. Limitations act on
all of them:

- Declared variables

A-114

ICS Triplex ISaGRAF Inc.

User's Guide

They are the ones declared using the ISaGRAF dictionary. They cannot be changed
and cannot be renamed for on-line change. It is recommended that some extra
variables are declared and initialised in the application even if not used today. Such
extra variables will enable future modifications to work on without changing the
application data checksum.

- Instances of function blocks

Each instance of "C" or IEC written function block corresponds to data stored in
ISaGRAF target real-time database. When function block instances are added or
removed, on-line change is no more possible. So it is better to work in ST with FB
instances declared in dictionary, rather than adding blocks (that will correspond to
new automatically declared instances) in Quick LD or FBD diagrams. Also, any
modification in the definition of available function blocks in the ISaGRAF library will
lead to an impossible on-line change.

- Steps

Each SFC step corresponds to a piece of data where are stored SFC step dynamic
attributes (its activity time and flag). Adding or removing SFC steps change the
application database and is denied for on-line change.

- Hidden variables allocated by compilers

The 1SaGRAF Compiler generates "hidden" temporary variables to solve complex
expressions. In some case, the change of an expression may lead to a different set
of non-visible temporary variables, and that leads to an impossible on-line change.
To avoid this situation, you can add the following entries in ISA.INI file, in order to
force a minimum number of temporary variables to be allocated for each program,
even if not used for the compiling of the first application version. Values given here
are examples:

[DEBUG]
MNTVboo=8 for Booleans
MNTVana=4 for integers and reals

i
MNTVtmr=4 ; for timers
MNTVmsg=2 ; for messages

When such a setting is written in ISA.INI, the compiler outputs a warning message if
a new compiling of the application leads to a greater number of allocated temporary
variables.

ICS Triplex ISaGRAF Inc. A-115

User's Guide

Inputs and outputs

As the I1SaGRAF 1/0O system is very open, required modifications should be
implemented by the OEM, using specific features of the corresponding hardware.
The 1SaGRAF system does not allow the user to add, connect or remove an 1/O
variable, or to modify the description of an I/O board on-line. Operations such as
modifying board parameters and locking 1/0 channels are available using standard
OEM features and the "OPERATE" function.

Run time operations

Modifying a running application consists of the following operations:

* modify the application source code on the workbench

e generate the new application code

e download the new application code using "update" command instead of
"download"

« switch from the old application to the new one, in between PLC execution cycles
using the "Realise update" command.

This procedure guarantees that the target PLC always has a complete and reliable
running application, and enables the user to control the timing of the sample
operations in a very safe and efficient way. It also enables the user to modify the
project as often as possible. Regardless to the process itself, the "on-line
modification” is essentially the same as a normal "stop, start and download" set of
commands. The only differences are that no variable state is lost, and the switching
time is very short (usually 1 or 2 cycle duration). During the switch, no variable is
modified, and all internal, input or output variables keeps the same value before
and after the application modification. During the switch, no action is performed, and
SFC tokens are not moved.

Memory requirements

In order to support the "n-line modification" capability, the target PLC must have free
memory space to enable the storage of the modified version of the application code.
Both versions of the application code have to be stored in PLC memory during the
switch operation.

Limitations

As described before, only modifications to code sequences are allowed. Variable
definition, application parameters and I/O connections cannot be modified. When
downloading a modified version of the application, ISaGRAF makes a comparison
between the modified application and the running one, in order to detect any unsafe
change. If the switch seems dangerous or impossible, a download error is
generated. One of the safeguards performed by ISaGRAF is to compare the symbol
table checksum, so that any variable, program, or SFC element name change is
detected. If a step is active when the switch occurs, its non-stored (N) actions are
lost. The new step activation actions are not executed. Actions executed at the de-
activation of the step are the ones carried over in the new application code. If a
transition is valid when the switch occurs, its receptivity equation is updated. The
new downloaded application code is not backed up on the PLC. The backup is the
version, which was previously downloaded with standard download commands.

A-116

ICS Triplex ISaGRAF Inc.

User's Guide

2= Operations

To update the code of a running application, the following operations have
to be performed:
e Before making any change on a running application, it is highly recommended to
make a copy of the current project under another name. The modifications may be
performed on the copies.
* Before editing any program, the user should check that the "update diary" option
of the editing tools is set, to ease future program maintenance.
e When one or more sequences have been modified (without modifying SFC
structures and program hierarchy), the code of the new application must be
generated on the workbench before downloading.
* Using the debugger, from within the old project, the user must connect the target
PLC and perform any operation which can make the application update faster or
more safety.
* Using the debugger, from inside the new project, the user must connect the target
PLC. If the application name is changed, the target database cannot be accessed.
The user must run the "File / Update" command.
e The modified application is downloaded by selecting the "update later" option.
This may slightly slow down the PLC during transfer.
e When download is complete, the user can run the "File / Realise update"
command to enable the switch at the most adequate moment. The switch will have 1
or 2 cycle duration.
e When the switch has been correctly performed, the programs of the modified
running application are displayed. If not, the existing running application remains as
is.

A.15.7 DDE exchanges

The 1SaGRAF debugger includes a DDE (Dynamic Data Exchange) server. An
advice loop can be installed between the ISaGRAF debugger and other applications,
in order to dynamically display the current value of variables in non-ISaGRAF
applications.

Only "advise" and "poke" transactions are supported by the 1SaGRAF debugger
DDE server. You can use "request" transaction only for variables already spied in an
advice loop. Other DDE services such as "execute" are not available. When an
advice loop is established on a variable, the value of this variable is updated in the
client application each time it changes. Variables of any type can be spied. The
identification of the dynamic link includes the following names:

Service name: "ISaGRAF"
Topic name......... Name of the ISaGRAF project
Item name: Name of the variable

If the variable is local to a program, its name must be followed by the name of its
father program, written between parentheses, with the following syntax:

ICS Triplex ISaGRAF Inc. A-117

User's Guide

variable_name(program_name)

The ISaGRAF debugger DDE server is dedicated to the ISaGRAF application
currently spied by the debugger. The ISaGRAF server can spy up to 256 variables.
The DDE server may be used when the ISaGRAF debugger runs in either
connected or simulation mode. The refresh duration is the one established for
communication between the debugger and the ISaGRAF target system or simulator.

A-118

ICS Triplex ISaGRAF Inc.

User's Guide

A.16 Spying Lists of variables

s
iijiii

The "Spy lists " command in the "Spy" menu of the Debugger window enables the
user to build non-contiguous lists of variables, which are refreshed with their current
values. Lists are built when debugging the application. The lists can be stored on the
disk and opened again during other debug sessions. A list may contain up to 32
variables. Variables of different types may be mixed in the same list. Global and
local variables can be inserted in a list. A list of variables is dedicated to one
particular project. Lists of variables are very useful for the functional testing of an
application. They allow the user to watch the changes of a limited part of the
controlled process, independent of the corresponding source code in the application
programs. Lists of variables are also useful while debugging ST and IL text
programs. The user can easily group in a list the set of variables used in a program,
in order to control or monitor the execution of the programmed instructions.

For each variable of the list, ISaGRAF displays its name, its current value and its
comment text. Columns can be resized by dragging separation lines with mouse in
the list title bar.

Saving lists on hard disk

The commands of the "File" menu are used to create, open and save the lists of
variables. ISaGRAF does not limit the number of lists for one project. While naming
the lists of variables to be saved on disk, the rules shown below have to be followed:
e name cannot exceed 8 characters

e the first character must be a letter

 the following characters can be letters, digits or underscore character

e naming of lists is case insensitive

The list editor cannot display more that one list of variables at a time in the same
window. However, the list editor can be run more than once, in order to spy different
lists simultaneously.

Inserting variables in the list

The "Edit / Insert" command inserts another variable in the list. The variable name
is selected in the list of objects defined in the project dictionary. This way the user
does not have to manually enter the identifier. The variable is inserted before the
variable currently selected in the list. The list cannot contain more than 32 variables.
The same variable cannot appear more than once in the same list.

Changing the selected variable

The "Edit / Modify" command replaces the selected variable by another variable.
You can also use the "Cut" command to remove the selected variable from the list.

Dump display

At any time, you can swap viewing mode between list and "Dump" view. Press the
"zoom" button in toolbar or use "Options / Dump" command to swap viewing mode.
In "Dump" mode, only one variable value is displayed. lts value is displayed in
numerical/symbolic format at the top of the window, and is also displayed in binary

ICS Triplex ISaGRAF Inc. A-119

User's Guide

"dump" format. This mode allows you to spy hexadecimal value of each byte in the
variable value.

¥.15aGRAF - RFDEMO:MYLIST - List of variables

File Edt Options Help
DB&| =M Q|

minp = 'this is a text string' ﬂ
Fl0.7

rcycle 00: 74 68 63 73 20 63 73 20 61 20 74 65 T8 74 20 73 this i5 a text s

10: 74 72 69 6E 67 tring

randprog LI
GE10(gmain) =[5 2V

"Dump" display is very useful for spying and understanding message strings
containing non-printable characters.

A-120

ICS Triplex ISaGRAF Inc.

User's Guide

A.17 Debugging ST and IL programs

s
iijiii

During simulation or on-line debugging of ST and IL program, no modification can be
entered in the program text.

L For IL programs, instructions are formatted in a list view. Current value of
a variable used in an instruction is displayed on the same line. You can double click
on an instruction to change the value of the corresponding variable.

ST For ST programs, a Spy List window is embedded in the editor window.
You can resize views by dragging with the mouse the separation line between them.

For each variable of the list, ISaGRAF displays its name, its current value and its
comment text. Columns can be resized by dragging separation lines with mouse in
the list title bar.

Saving list on hard disk

The "File / Save list" command save the lists of variables on the disk, under the
same name as the edited program. This list will be automatically re-loaded each time
ST or IL program is open in debug mode. This list can also be freely open and
modified using the Spy List tool run by the "Spy / Spy list" command of the
debugger window.

Inserting variables in the list

The "Edit / Insert variable” command inserts another variable in the list. The
variable name is selected in the list of objects defined in the project dictionary. This
way the user does not have to manually enter the identifier. The variable is inserted
before the variable currently selected in the list. The list cannot contain more than 32
variables. The same variable cannot appear more than once in the same list.

i When the name of a variable is highlighted in ST text, press this button in
the toolbar or run the "Edit / Spy selection" command to directly send the variable
to embedded spy list.

Changing the selected variable

The "Edit / Change variable" command replaces the selected variable by another
variable. You can also use the "Cut variable" command to remove the selected
variable from the list.

ICS Triplex ISaGRAF Inc. A-121

User's Guide

A.18 Debugging with SpotLight

ISaGRAF SpotLight tool allows the user to define watch lists that can be displayed
either as graphic pictures or as lists during debug. Graphic items must be linked to
the variables of the ISaGRAF project. The graphic picture is both defined and
animated "on-line".

To force the value of a variable, double click on the corresponding item from graphic
or list layout, or hit ENTER when it is selected.

You also can lock the document (deny any modification) using the "File / Lock"
command. When a document is locked, you still can force variables by double
clicking on their symbol.

A.18.1 Building the graphic layout

122

i1

!

A chart is made of background pictures (bitmaps or metafiles), and a set of graphic
items that will be animated during debug. To enter the chart, the following operations
must be performed: Insert background pictures, insert graphic items, link objects to
the variables of the project

Background pictures

The background pictures are "bitmap" (.BMP) or “metafile” (.WMF) files. Numbers of
pictures included in the graphic layout is not limited. Pictures can be moved or
resized in graphic layout. They do not appear in list layout. Pictures are built with
other tools. SpotLight does not include a painting tool. The "Options / Background
color" command is used to select a solid color for empty space in graphic layout.

Note: Bitmaps consume a large amount of memory. It is highly recommended to

correctly size the picture, and limit the unused space inside the bitmap rectangle.

Single text display

A “single text” item is a text written in a rectangle. The text displayed is the value of
the attached variable. Thus, such item can be linked to message string variable.

The rectangle where text is displayed can be either filled with color or transparent.
The character font used to display text is adjusted to fit the height of the rectangle
when item is resized.

Unipolar and bipolar bar graphs

A bar graph is a rectangle with a colored part that represents the numerical value of
the attached variable. Optionally, the rest of the rectangle can be filled with color. A
bar graph can be either horizontal or vertical.

Unipolar bar graphs can grow in any direction: to the top, to the bottom, to the left or
to the right.

Bipolar bar graphs can grow either in positive or negative direction, according to the
value of attached variable. In case of a bipolar bar graph, the maximum allowed
value is the same for both negative and positive scales.

A-122

ICS Triplex ISaGRAF Inc.

User's Guide

+—
Unipolar Bipalsr ! horizortal
vertical

Curves

It is possible to insert a curve in a document. A curve shows the history of the
attached variable. Although it is not a precise measurement tool, it can give useful
debug information about synchronism between various variables.

A curve stores the 200 last values of a variable. The number of samples is not
changed when the curve item is resized in the graphic layout.

- |
\ —

last registered poaint

Boolean icons

A “Boolean icon” item is used to display a binary state. One icon (.ICO) file is defined
for FALSE or O value. Another icon is defined for all other non zero values. As
SpotLight does not include an icon editor, icon files should be prepared with another

' NP

FalLsE TRLUE

Bit fields

A “bit field” item shows in a graphic panel the 32 bits of an integer value. The less
significant bit is always displayed on the right. It is not recommended to use bit field
for other data types such as real analog values, as the displayed information can
lead to confusions.

\

bit 31 kit 0

ICS Triplex ISaGRAF Inc. A-123

User's Guide

L

A.18.2

A.18.3

Select, move or resize items

Selecting graphic objects is needed for most of the editing commands. SpotLight
enables the selection of one or more existing objects in the chart area. To select
objects, the "select" (button with an arrow) choice must be checked in the editor
toolbar. To select one object, the user simply has to click on its symbol. To select a
list of objects, drag the mouse in the drawing area to select a rectangle area. All the
graphic objects that intersect the selection rectangle are marked as "selected". A
selected object is drawn with little black squares around its graphic symbol.

By making a new selection, any previously selected objects are unselected. To
remove the existing selection(s), simply click with the mouse on an empty area
outside of the rectangle which borders the selected objects.

To move objects, you first have to select them. Then place the mouse cursor on the
border of the selected item and drag it to other location.

To resize an object, you first have to select it. Then place the mouse cursor on one
of the small rectangles displayed in the selection border, and drag it in appropriate
direction to resize the object. Pictures can also be resize. In such case, the
corresponding bitmap or metafile is stretched to fit the new specified item rectangle.

Group items / dissociate groups

You can group items together so that they are managed as one item. To make a
group, select items in graphic layout and run the “Edit / Group” command. The “Edit
/ Dissociate” command is used to restore items of the selected group as separated
ones.

A group may contain a picture. A group may also contain another group.

When items are grouped, their style cannot be changed anymore. Items of the group
are still displayed, but cannot be used (with double click) to modify the value of
attached variables.

A group appears at just one line in the list layout.

The list layout

] At any time, you can swap between graphic and list layout, by pressing

this button. You can also use the “Options / List - Graphic layout” command.

In the list layout, items are shown in a classical list box. The height of each item is
calculated according to its drawing style. Pictures (bitmaps and metafile) are not
visible from the list layout. A selection is available in list layout, and should be used
to set item style or change the value of a variable. Multiple selection and commands
using it are not available in this mode.

ir 1 You can re-order the items in the list using the “Edit / Move in list”
commands. The item to be moved should be selected in the list.

Defining the item style

The graphic style and settings of an existing item can be modified, by double clicking
on its symbol in the graphic area, or by running the “Edit / Set style” command
when item is selected in graphic or list layout. The “Style” dialog box is also opened

A-124

ICS Triplex ISaGRAF Inc.

User's Guide

A.18.4

when a new item is added to the document. It groups the following pieces of
information to be selected by the user:

Graphic style and settings:

The display style (single text, bar graph, curve...) of an item can be changed
dynamically. When foreground and background colors are used, they can be
customised using the corresponding boxes. When style is “Boolean icon”, the
pathname of corresponding .ICO files has to be specified. Use “...” buttons close to
these controls to browse icon files existing on the disk.

Scale:

This is the maximum value that can be displayed in bar graphs and curves. For
bipolar bar graphs and curves, the same absolute value is used for both positive and
negative axis.

Variable name:

When the "Name" field is the active field, pressing the "..." button close to edit
control enables the user to find the names of the variables already declared in the
project dictionary.

Caption:

A caption can be displayed closed to the graphic item in graphic layout. You can
customise the location of the caption text (top, bottom, left or right) and its contents.
Caption can be any combination of the variable name and its value formatted as
text. Caption customisation has no effect on list layout.

Command variable:

If the "Command variable" option is set, the user can modify the value of the linked
variable during debug by double clicking on the item graphic symbol.

Commands of the "File" menu

The "File" menu contains commands that allow the user to manage the complete
document.

DI The "New" command of the "File" menu starts the editing of a new
document. The number of documents defined for a project is not limited by
ISaGRAF. Before editing the new chart, the previously opened chart is closed. The
SpotLight cannot be used to edit several charts at once. However, multiple SpotLight
windows can be opened simultaneously with each used to edit a different document.

The "Open" command of the "File" menu allows the user to close the
currently edited document and to start editing another document of the current
project. The new selected document replaces the current one in the editing window.
When selecting the new document, the "Delete" button can be used to delete an
existing file, in order to clean up the project directory. Icon and bitmap files
referenced in a chart are not erased when the chart is deleted.

ICS Triplex ISaGRAF Inc. A-125

User's Guide

A.185

& The "Save" command of the "File" menu stores the currently edited
document on the disk. If it is a new untitled document, the user must give it a name
before saving it. Naming a document must conform to the following rules:

* The length of the name cannot exceed 8 characters

e The first character must be a letter

* The following ones must be letters, digits or underscore characters

e Naming is case insensitive

The "Save as" command of the "File" menu allows the user to store the currently
edited document under another name.

Note for ISaGRAF V3.2 users

Spotlight can read graphics and lists of time diagrams built with the tools of
ISaGRAF V3.0 or V3.2. Such files appear in the "Open" dialog box, with the
description of their origin. Files can be read and freely modified with SpotLight.
When opening an ISaGRAF V3.2 graphic, the document is automatically marked as
"Locked". Remove the "Lock" option from the "File" menu if you want to make
changes in the graphic.

When an 1SaGRAF 3.2 graphic or list of time diagram is open, SpotLight always
proposes to save it in native SpotLight format. The "Save As" dialog box is
systematically open when closing such a document.

A-126

ICS Triplex ISaGRAF Inc.

User's Guide

A.19 Uploading applications

ISaGRAF supports the uploading of the application stored in the target. The upload
procedure communicates with the target to load the embedded zipped source code
(EZS) and then restore the loaded project in the workbench environment.

The project running on the connected target system can be uploaded if the target
version is V3.22 or later, and if zipped source code have been embedded with the
application. Embedding source code for upload is an optional feature.

A.19.1 Uploading a project

The "Upload" dialog box is run from the "Files" command of the ISaGRAF Project
Manager. Upload does not refer to an existing project on the Workbench. The
currently selected project in project management list has no relationship with upload
mechanism. To upload the application running on the target you must:

1- ensure that the target is properly connected

2- set-up the communication parameters according to the connection link

3- press the "Run" button

Uploading embedded zipped source (EZS) and decompressing them may take few
seconds. Messages in the dialog box will inform you when upload is complete, or in
case of error.

The name used to create the ISaGRAF project is the one read in the target through
communication. If this name is already used for an existing project in the workbench,
you will be prompt to either overwrite it or select an unused name. You cannot
cancel the registration of loaded sources as a project when upload is complete. The
uploaded project is now ready and can be opened.

= Possible errors

The following errors may occur when uploading a project. You are informed of the
error in the "Upload" dialog box.

- Communication cannot be established with the target

- Connected target is an ISaGRAF system before version 3.22

- There is no application running in the target

- There is no EZS embedded in the target

A.19.2 Communication settings

Pressing the "Set-up" button enables the user to define the parameters of the link
used for communication for upload between 1SaGRAF workbench and the target
ISaGRAF system. You have to ensure that the configured parameters match to the
connected target before running upload.

A.19.3 Preparing a project for upload

You have to inform the ISaGRAF Code Generator that zipped source code must be
embedded with the application code if you want to enable upload later. For this,

ICS Triplex ISaGRAF Inc. A-127

User's Guide

press the "Upload" button in the "Compiler options" dialog box. Another dialog box
enables you to check, as an option, the embedding of zipped source code. In this
case, only minimum required source files will be embedded. Use other check boxes
to embed also optional files.

Important note: Libraries are not downloaded with embedded source code. This
includes functions and function blocks and 1/O boards and equipments.

Optional files

In addition to the minimum required source code, the following files can also be
embedded. They are options as their selection leads to extra memory requirement
on the target.

Project descriptor: If not embedded, the project descriptor after upload will just
indicate the upload date.

Password protection: Upload function is not protected by a password. If you want the
uploaded project protected, you have to embed its password protection system with
source code.

Comments for not connected 1/0 channels: 1ISaGRAF gives you the possibility to
enter description text for non-connected 1/0 channels. Do not check this option is
you work with connected I/Os only.

History of modifications: This is the global history of modifications for the project.

Diary files: Diary file of each program contains user written notes plus the history of
compiler output messages referring to the program. Embedding diary files may
consume a lot of memory in target.

Lists of variables and time diagrams: These are the files created during debug, and
containing lists of variable names for list or time diagram monitoring.

Graphics, icons and bitmaps: This includes ISaGRAF graphics, plus all attached
icon and bitmap files, if they are located in the project directory. Warning: embedding
diary files may consume a lot of memory in target.

A.19.4 How zipped source are stored in the target

Embedded zipped source (EZS) is stored in generated code with resources. The
generated resource is called "EZS". If source code embedding is selected, you
cannot choose this name for another resource. Embedding source code does not
imply any limitation in resource definition. The user written resource definition file is
not affected by source embedding.

Please refer to the ISaGRAF documentation about the Code Generator for further
details and information about resources.

A-128

ICS Triplex ISaGRAF Inc.

User's Guide

A.19.5 Memory requirements on the target

Embedded zipped source (EZS) code requires extra memory to be stored with
application code in the target. A general rough estimation is that minimum EZS (no
extra option selected for source embedding) has one and a half the size of the
executable code. This means that the embedding of EZS will multiply the size of
downloaded code by 2.5.

Special limitation may appear on some target system based on segmented memory.
As EZS are stored as resources in generated code, they must be stored in the same
data segment as the application code.

A.19.6 About uploaded project

The uploaded project contains all the files and data required for re-compiling.
Depending on the options selected during its previous compiling, it may also contain
auxiliary files such as project descriptor and program diary files.

You have to compile (make) the project before debugging or monitoring it. Warning:
as ISaGRAF uses the compiling date stamp to compare applications, you will be
informed when opening the debugger that workbench and target applications have
different version codes.

Important note: Libraries are not downloaded with embedded source code. You
have to ensure that the appropriate library functions and function blocks are installed
with your ISaGRAF workbench before re-compiling the uploaded application.

A.19.7 Compatibility issues

Upload is supported by ISaGRAF target and workbench version 3.22 or later.
Extensions have been made to the communication protocol to support upload.

There is no restriction in embedding zipped source code (EZS) in a target based on
ISaGRAF systems version 3.03 to 3.21, as EZS are stored in application code as
standard resources. But embedded information cannot be uploaded in this case, as
such target does not support required communication services.

ICS Triplex ISaGRAF Inc. A-129

User's Guide

A.20 Using the Diagnosis tool

The "Diagnosis Tool" is a subset under the 1ISaGRAF debugger tool. It
enables the end user to work on a predefined set of variables, in order to examine
and control the process. The 1ISaGRAF debugger is a very powerful tool, which
includes high level functions. The Diagnosis Tool provides a safe way to control the
target application for final running operations or maintenance. The ISaGRAF
Diagnosis Tool is run directly from the ISaGRAF group in Program Manager, by
double clicking on the following icon:

Diagnosis

The list of existing projects is displayed in a dialog box. It enables the user
to run the limited 1ISaGRAF debugger on an existing, already downloaded 1SaGRAF
application. Pressing the "OK" button starts the limited debugger on the selected
project. Pressing the "Cancel" button closes the dialog box. The "Set-up" command
is used to set-up the communication link between the ISaGRAF Workbench and the
target PLC. Refer to the "Managing programs" chapter of this manual for more
information about this command.

Note: The 1SaGRAF Diagnosis Tool (limited debugger) cannot be used to
download, stop or update the application running in the target PLC. No operation
can be performed if the project selected in the Diagnosis Tool dialog box is not the
same as the one installed and running in the PLC.

When the limited ISaGRAF debugger is run, and correctly connected to
the target application, the following commands are available:
e Spy lists of variables
e Spy graphic documents with SpotLight

A-130

ICS Triplex ISaGRAF Inc.

User's Guide

A.21 Using the ISaGRAF simulator

A211

A.21.2

The 1ISaGRAF Kernel simulator is started with the debugger when the "Simulate"
command of the "Debug" menu in the Program Management window is run. The
kernel simulator is a complete 1SaGRAF target system supporting ISaGRAF
standard features and all the "C" functions and function blocks of the standard library
delivered by ICS Triplex 1ISaGRAF. The 1/O boards are graphically simulated in a
window. Any type of 1/0O board can be simulated. The boards defined as "Virtual
boards" during the 1/0O connection also appear in the simulation window.

Links with the debugger

The kernel simulator supports full communication with the ISaGRAF debugger, so
any of the debug possibilities can be used during simulation. The kernel simulator
always works on the current ISaGRAF application. During simulation, the debugger
commands "Start", "Stop", "Download" or "Update" are no longer available. The
simulator cannot be used if the "SIMULATE" target was not selected in compiler
options before building the target code. Closing the simulator window implies that
the debugger window (and any ISaGRAF window opened during the debug session)
is also closed.

I/0 simulation

1/0 boards appear in the simulator window, titled by their name and slot number. Any
of the ISaGRAF standard types of 1/0s (Boolean, analog or message) are handled.
The channels of the input boards are displayed with special buttons and fields. The
channels of the output boards are displayed with graphic status lights and data
fields.

n-p Boolean inputs: a square green button represents A Boolean input. The
number of the channel is displayed with the 1/O button. The input value is TRUE
when the button is pressed. Clicking on the button changes the corresponding 1/0
value. Use the right button of the mouse to set the input only when the button is
pressed.

ner Boolean outputs: a small circle represents A Boolean output. The
number of the channel is displayed with the 1/0. The output value is TRUE when the
graphic symbol is highlighted.

nu<p Analog inputs: An analog input channel is a simple numerical field, where
the value of the corresponding input can be entered. Clicking on the box displays the
caret. A new value for the channel can then be entered. It is not necessary to use
the ENTER key after input. Analog inputs can be entered in either decimal or
hexadecimal base. Use up/down buttons to increase or decrease the current value.

ICS Triplex ISaGRAF Inc. A-131

User's Guide

N e Analog outputs: An analog output channel is a numerical output field.
The output value can be displayed as either a decimal or hexadecimal number. The
user on an output channel can perform no action.

2 <p Message inputs: A message input channel is a simple text field, where
the value of the corresponding input is entered. Clicking on the box displays the
caret. A new value for the channel can then be entered. It is not necessary to use
the ENTER key after input.

2 e Message outputs: A message output channel is a text output field No
action can be performed by the user on an output channel.

A.21.3 Library components

The ISaGRAF simulator fully supports the standard conversions, functions and
function blocks, delivered by ICS Triplex 1ISaGRAF. Below is the list of supported
objects:

= Conversion functions:

bcd, scale

= Functions:

abs, acos, ArCreate, ArRead, ArWrite, ascii, asin, atan, char, cos, delete, expt, find,
insert, left, limit, log, max, mid, min, mlen, mod, mux4, mux8, odd, rand, replace,
right, rol, ror, sel, shl, shr, sin, sqrt, tan, trunc

= Function blocks:

average, blink, cmp, ctd, ctu, ctud, derivate, f_trig, hyster, integral, lim_alrm, r_trig,
rs, sema, sr, stackint, tof, ton, tp

User defined conversions, "C" functions and function blocks are commonly not
integrated with the ISaGRAF Simulator. Typically, such objects are designed to use
software and hardware resources of the target system. Such resources are generally
not available on the Windows system. The ISaGRAF Simulator provides the
following standard behavior for any user defined conversion, function or function
block:

e When the simulator processes a new conversion, it is replaced by a "null"
conversion. This means that the physical value of the analog variables is always
equal to the electrical value (as entered or displayed on the Simulator panel).

e When a new "C" function or function block is run by the simulator, it does not
process any operation. The result value is not set.

A.21.4 Options

The commands of the "Options" menu enable the user to control the display of I/Os
in the simulator panel. The user can set or remove these options at any time during
debug.

A-132

ICS Triplex ISaGRAF Inc.

User's Guide

= When the "Color display" option is set, /O channels are displayed as
color bitmaps. If colors cannot be distinguished on some LCD screens, the user
should remove this option, to get pure black and white input and output graphics for
I/O channels.

= When the "Variable names" option is set, a sticker is displayed beside
any /O channel, with the name of the connected I/O variable. Removing this option
enables the user to reduce the size of the simulator panel.

= When the "Hexadecimal values" option is set, any input or output analog
channel is displayed or entered in hexadecimal format.

= When the "Always on top" option is set, the simulator window is always
visible, even if the input focus is on another window.

A.21.5 Saving and restoring input states

Using the ISaGRAF simulator, input channels are forced through manual operations,
acting on toggle buttons and edit controls of the simulation panel. You can at any
time use the following commands of the "Tools" menu to save and restore the state
of all input channels:

Load input scheme Set values of input channels with values
stored in a file that has been created on disk
by "Save input scheme" command.

Save input scheme Save state of input channels in a file so that
they can be restored later using the "Load
input scheme" command. File is stored in the
project directory and thus is saved with other
project files by the ISaGRAF archive utility.

Note: Only named input channels (the ones having a variable connected) are
saved on disk.

A.21.6 The cycle profiler

The 1ISaGRAF Cycle Profiler is a powerful diagnostic tool that shows how cycle time
is distributed between various programs, functions and function blocks of an
application. This tool is very useful to have a quick diagnostic on the application
performances, and leads the programmer to the parts of code, which may need
optimisations.

The Cycle Profiler is run by the "Tools / Cycle Profiler" command in the menus of
the 1SaGRAF Simulator window. It displays, for each program, function or function
block, the percentage of the cycle time spent to execute it:

ICS Triplex ISaGRAF Inc. A-133

User's Guide

Wi

MIT 1206%

Cih 240 e T
DRIVE 7.09% b 1]
LEAD o0
FL&SH 0.00% [|
AN e 0.00% | |

When the "View / Average" option is set, displayed information is an average of
percentages calculated since the application has been started, or since the last time
the "View / Reset" command has been run.

If the "View [/ Average" option is not set, displayed information shows
measurements done during the execution of the last cycle. You can also use this
feature when the application is in "Cycle to Cycle" mode to have a set of
measurements depending on the application context.

Use the "View / Copy" command to copy program names and percentages to the
Windows Clipboard in ASCII format. Then, data can be pasted into text documents
or common spreadsheets.

Important notes:

These are not precise measurements. Percentage calculation is based on TIC
instructions counting, taking into account various instruction execution times.
Calculation does not include the time spent in "C" functions and function blocks.

The value displayed for a function or a function block is the sum of all the "calling
times" from the application programs in the same cycle.

Time calculation is based on TIC code and does not provide reliable information if
the actual application code is generated in "C" language and built using a "C"
compiler.

A.21.7 Simulation scripts

ISaGRAF simulator includes a tool to build and run simulation script. A script is
described with an easy ST like text language, and is used to automate tests with the
ISaGRAF simulator.

The simulation script editor is run by the "Tools / Simulation scripts” command of
the Simulator window. Below is the frame of the script editor:

A-134

ICS Triplex ISaGRAF Inc.

User's Guide

[l RFDEMOD:TEST - Script M=l E3
File Edit Scnpt Option: Help

hBd|xo| 28|
if bstart = 1 goto L1
print 'bstart = 0
goto L2
Ll:

-
print 'hstart 1! -
L7 -

-

4

bstart = 1 -
Cimeprog <= 0

status <> 3top _IJ
k1

The upper window is a text editor where script instructions are entered. It is used as
other ISaGRAF text editors and includes high level features such as mouse
selection of a variable symbol. You can use commands of the "Options" menu to
set-up tab width and select a character font.

The lower window shows all the messages output when the script is run. The
separation line between windows can be freely dragged to resize windows. The
output window can be hidden during script editing, but is automatically open each
time a script is run.

- Editing scripts
Use the commands of the "File" menu to manage script files:
creates a new untitled script
loads an existing script from file
saves script text and contents of output window to disk, in project
directory
Save as saves script under another name

Two files are created in the ISaGRAF project directory for each script:
<scriptname>.SCC.......... text of the script (instructions)

<scriptname>.SCO.......... contents of the output window

where <scriptname> is the name of the script. Both files are standard text files and
can be open using any other text editor.

While editing a script, you can use the "Edit / Insert symbol" command to
select a declared variable name to be inserted at the caret position.

- Running scripts

Script must be checked and compiled before running it. If necessary, syntax
checking is automatically performed on a "Run" command. Use the following
commands of the "Script" menu:

x ChecK....oovveviiienien. checks syntax and compile script

ICS Triplex ISaGRAF Inc. A-135

User's Guide

gl

Run Scriptoccveeene start execution of the script currently edited

In the case of a new untitled script, it must be saved (and a name must be
entered for it) before it is checked. In case of a named script, script is automatically
saved to disk before syntax checking.

When script is running, its contents cannot be changed. A message is displayed
when end of script is reached. You can also abort a running script using the
following command of the "Script" menu:

Abort Scriptterminates the running script

Script execution is performed between target cycles. In the case of an infinite loop
programmed in the cycle, ISaGRAF simulator ensures that this loop is always
broken so that ISaGRAF cycles are still executed and other ISaGRAF applications
are not blocked. The 1ISaGRAF script interpreter decides to break script execution if
the same "label" is encountered more than once in the same target cycle. Script
execution can also be normally broken by "Cycle" or "Wait" instructions.

Script description language

Script description language is a very simple text language similar to ST, but where
each instruction is entered on a separate text line, and does not need to be
terminated by a semicolon. Use the following button of the toolbar to know the list of
available instructions and to insert a keyword at the caret position:
? Insert instruction (keyword and help as comments)

There are various types of instructions. First is the assignment (forcing) of a variable:
T e Assignment
Other instructions allow the output of messages to the output window:
Print ..o outputs a text string or a variable value
PrintTime outputs current time stamp
Other instructions are used to synchronise script instructions with ISaGRAF cycle:
Cycle....coveenen. let ISaGRAF simulator execute one cycle
Walit...oooooieiiiiens waits during a specified time
Other instructions are used to control instruction flow in the script:
Labels.......c...... can be placed anywhere in the script
GOtO ..o unconditional jump to a label
If goto .. conditional jump to a label
End....cccoveeiinenne terminates script
Script language is not case sensitive. Comments can be inserted at the end of any
text line. Comments can either be written according to ST conventions (between "(*"
and "*)" characters), or prefixed by a ";" character.

A-136 ICS Triplex ISaGRAF Inc.

User's Guide

:=" Assignment

Meaning:

Syntax:

Arguments:

Notes:

Warning:

Example:

Print

Meaning:

Syntax:

Arguments:

Notes:

Example:

Force the value of an ISaGRAF variable. It can be an internal variable,
an input channel or an output channel.

<varname> := <constant_ expression>
<varname> = <constant expression>

<varname> is a valid symbol of a declared application variable, or a
directly represented I/O variable using "%" writing conventions.

<constant_expression> is a valid constant expression that
matches the type of the specified variable. For Booleans, "0" and "1"
can be used instead of "FALSE" and "TRUE". For timers, the "T#" or
"TIME#" prefix can be omitted.

Input variable forced by a script does not need to be locked. The
drawing of the corresponding input channel is updated when a script
forces input variable.

do not force input or output analog variable attached to a conversion,
as script execution does not support conversion functions or tables.

MyBooVar := 1 (* same as TRUE *)
MyIntVar := 1234

MyRealVar := 1.2345

MyMsgVar := 'Hello'

MyTmrVar := t#12s

Writes a string or the value of a variable in the output window. Text is
output as one new line at the end of text already written in output
window.

Print '<text>'
Print <varnames

<text > is any text string expressed between single quotes

<varname> is the valid symbol of a declared application variable, or a
directly represented 1/O variable using "%" writing conventions.

Output of variable values is always formatted according to IEC
conventions.

Print 'Hello'
Print MyBooVar

ICS Triplex ISaGRAF Inc. A-137

User's Guide

Output:

PrintTime

Meaning:

Syntax:

Notes:

Example:

Output:

Cycle

Meaning:

Syntax:

Notes:

Example:

Output:

Hello
MyBoovar = TRUE

Writes the current time stamp in the output window. Text is output as
one new line at the end of text already written in output window.

PrintTime

Time stamp is formatted according to current setting of Windows
System

Print 'Time now is:'
PrintTime

Time now is:
15:45:22

Suspends the execution of the script until the next ISaGRAF cycle is
performed.

Cycle

Script instructions are executed at the beginning of an ISaGRAF cycle.
If the simulator is in "Cycle to Cycle" mode, the "cycle" instruction is
immediately followed by a cycle. The following instructions of the script
will be performed on the next "Execute one cycle" command from the
debugger.

(* the ISaGRAF program copies A to B ¥*)

A :=0

Cycle

Print B

A :=1

Print B (* no cycle performed / B not set to 1 *)
Cycle

Print B

0
0
1

W w w
1]

A-138

ICS Triplex ISaGRAF Inc.

User's Guide

Wait

Meaning:

Syntax:

Arguments:

Notes:

Example:

Output:

Labels

Meaning:

Syntax:

Arguments:

Notes:

Example:

Suspends the execution of the script until a delay is elapsed.
Wait <delay>

<delay> delay expressed according to IEC conventions for time
constant expression. The "T#" or "TIME#" prefix can be omitted. Delay
value must between 10 milliseconds and 1 hour.

Accuracy of the "Wait" instruction is not precise as it depends on the
host Windows system. Also, the delay should be considered with an
accuracy of plus or minus one ISaGRAF cycle. When a "Wait"
instruction is reached, 1ISaGRAF cycles are performed until the delay
is elapsed and before continuing the script execution.

PrintTime
Wait 2s
PrintTime

15:45:27
15:45:29

Labels can be placed anywhere in the script. They are used as a
destination by "Goto" instructions and allow flow control for script
instructions.

<labelname>:

<labelname> unique name according to ISaGRAF variable naming
conventions: limited to 16 characters, beginning with a letter, followed
by letters, digits or underscore characters. When defined, label name
should be followed by a ":" character.

No instruction should be placed on the line where a label is defined.
Label name should not be the same as a declared 1ISaGRAF variable
symbol

(* example of a script with an infinite loop *)
loop:

PrintTime

Wait 1s

Goto loop

ICS Triplex ISaGRAF Inc. A-139

User's Guide

Goto

Meaning:

Syntax:

Arguments:

Notes:

Example:

Output:

If Goto

Meaning:

Syntax:

Arguments:

Unconditional jump to a label.
Goto <labelname>
<labelname> is the name of a label defined in the script.

Backward jumps are allowed. In case of an infinite loop, script
execution is automatically broken on each loop in order to preserve
execution of ISaGRAF cycles.

Print 'Before Jump'

Goto MyLabel

Print 'Within Jump' (*never performed *)
MyLabel:

Print 'After Jump'

Before Jump
After Jump

Conditional jump to a label. The condition is either a comparison
between two ISaGRAF variables, or a comparison between a variable
and a constant expression.

If <varl> test <var2> Goto <labelname>
If <varl> test <constant expr> Goto <Ilabelname>

Available comparison tests are:

= true if both members have same value

<> true if members have different values

< true if first member is less than second

<= true if first member is less than or equal to
second member

> true if first member is greater than second

>= true if first member is greater than or equal
to second member

<varl> <var2> are valid symbols of declared application variables,
or directly represented I/O variables using "%" writing conventions.

<constant expr> is a valid constant expression that matches the
type of specified variable. For Booleans, "0" and "1" can be used
instead of "FALSE" and "TRUE". For timers, the "T#" or "TIME#" prefix
can be omitted.

A-140

ICS Triplex ISaGRAF Inc.

User's Guide

Notes:

Example:

End

Meaning:

Syntax:

Notes:

Example:

<labelname> is the name of a label defined in the script.

Backward jumps are allowed. In case of an infinite loop, script
execution is automatically broken on each loop in order to preserve
execution of ISaGRAF cycles.

(* This script loops until MyVar is TRUE *)
Loop:

If MyVar = TRUE Goto TheEnd

Print MyVar

Goto Loop

TheEnd:

Terminates script
End

It is not mandatory to place an "End" instruction on the last line of the
script

(* This script loops until MyVar is TRUE *)
Loop:

If MyVar = FALSE Goto Continue

End

Continue:

Print MyVar

Goto Loop

ICS Triplex ISaGRAF Inc. A-141

User's Guide

A.22 Using the Library Manager

The 1SaGRAF libraries provide a standard interface between automation
development and the software or hardware capabilities of the 1SaGRAF target
system. There is one library for each type of interface. The ISaGRAF Workbench
Library Manager is dedicated to the hardware supplier, or to the software engineer.
He uses the library manager to describe the ISaGRAF programming interface of the
objects he creates.

The ISaGRAF Workbench Library Manager shows the elements of one of the
ISaGRAF libraries. In the left area of the window is the list of the elements of the
selected library. In the right area is the technical note (user manual) of the element
currently selected on the element list. The menus of the library manager contain the
commands to create, define or modify elements of the active library. The "File /
Other library" command allows the selection of one of the ISaGRAF libraries. The
combo box on the left of the toolbar can also be used to select a library:

C functions * Dllml I%II

12 configurations

2 complex equipments
12 boards

Functions

Function blocks

C functions
C function blocks
Canversion functions

A.22.1 Managing library elements

Use the commands of the "File" menu to create elements and work on existing ones
in the open library

Creating a new element

The "New" command of the "File" menu creates a new element into the selected
library. The name of the new element is entered, based on the following naming
rules:

* the maximum length of a name is 8 characters

o the first character must be a letter

» the following characters must be letters, digits or'_' character

e the naming of a library element is case insensitive.

A text comment is associated to each library element. This comment is entered while
creating the element. When a new element is created, the following must be
entered:

o its definition for an I/O configuration,

e its parameters for an 1/0 board,

A-142

ICS Triplex ISaGRAF Inc.

User's Guide

e its user interface for a function or function block.

When a "C" conversion, "C" function or "C" function block is created, a complete
frame of its source code is automatically generated.

Working on existing elements

The "File / Rename" command allows the user to change the name or the comment
of the element selected from the list of elements. The "File / Copy" command allows
the user to copy the element highlighted in the active library on another element in
the same library. If the destination element already exists, all its contents are
overwritten. If the destination element does not exist, it is automatically created. The
"File / Delete" command removes the currently selected element from the active
library. "Rename", "Copy" and "Delete" commands handle the following components
of the element:

o technical note

* complete definition for an I/O configuration

* parameters for an I/O board or complex equipment

« interface definition for a function or function block

e source code for function and function block written in IEC language

e source code for a C conversion, a function or a function block

& If the element is a "C" conversion, "C" function or "C" function block, its
name is not automatically updated in the attached source code by a "Rename" or
"Copy" command.

If the element is a function written in IEC language, the return parameter
name is not changed by a "Rename" or "Copy" command.

Setting password protection

The "File / Set password" command enables the user to define password protection
for the selected element in the open library. Refer to the "Password protection"
section, at the end of the first part in this manual for further information about
password levels and data protection. Passwords are only relative to the selected
element. They have no influence on other elements of ISaGRAF libraries.

Compiling functions and function blocks

When the library of functions or function blocks written in IEC languages is selected,
the "Verify (compile)" command of the "File" menu is used to check the syntax of
the selected element and create its object code. Functions and blocks written in IEC
languages have to be compiled without errors before they can be used in ISaGRAF
projects. This command has no effect if another library is selected.

Technical notes

The "Edit / Technical note" command allows the user to enter the technical note of
the element selected in the active library. The technical note is entered with the
ISaGRAF text editor. The technical note of an element is its user guide. It will be
consulted by the user of the element during its integration in an 1ISaGRAF project.
The technical note on how to use the element should contain the description of its
main function, the detailed explanation of its programming interface and parameters,
and its context and limits.

ICS Triplex ISaGRAF Inc. A-143

User's Guide

The "Tools / Standard note format" command allows the user to define a standard
text format for all the elements of the currently selected library. When editing the
technical note for a new element, this format is used as a main frame. This allows
the user to optimise technical note editing.

Parameters

The parameters of an element describe the interface between the computer
operations provided by the element and the use of the element in an ISaGRAF
application. Parameters have a different meaning for each type of library element.
The parameters of an I/O configuration define the complete set of I/O boards of the
configuration, and default variable names used for 1/O channels. The parameters of
an 1/0O board or complex equipment define the physical and logical configuration of
the board. The parameters of a function or function block define the interface of the
element, according to ST language function calling conventions. There is no
parameter for a conversion function because it uses a standard pre-defined
interface.

Source code

The 1SaGRAF Workbench allows the programmer to manage the source code of a
library conversion, function or function block. The source code of a function or a
block written in IEC language is a text or a diagram described with the language
attached to the function. The source code of "C" components ("C" functions, "C"
function blocks and conversion functions) is divided in two separate files: a source
header that contains the exact definition of the interface, according to the element's
parameter definition and a source code file that contains the element's operation
implementation.

The ISaGRAF workbench generates the source code file when a new library element
is created. It also creates and updates the source header, based on the parameter
definition. The programmer can use the 1ISaGRAF text editor to complete the source
code file.

Archiving library elements

The "Tools / Archive" menu command runs the 1ISaGRAF archive manager to save
or restore library elements. You first need to select a library before running the
"Archive command". The archive manager shows list of elements for only one
library at a time.

You can also restore third-party libraries containing IEC 61131 functions or function
blocks. When restoring such libraries, you extract them from their archives, then
license them to enable their use. The archives for libraries of functions have the .iia
extension, whereas, the archives for libraries of function blocks have the .aia
extension. You initiate licensing for these libraries from the Library Manager then
complete the process in the License Manager. Before restoring third-party libraries,
make sure to copy their archives onto your disk.

To restore a third-party library

1. To access the Library Manager, in the Workbench, from the Tools menu,
choose Library.

A-144

ICS Triplex ISaGRAF Inc.

User's Guide

2. To access the Archive utility, in the Library Manager, from the Tools menu,
choose Archive.
3. In the Archive utility, click Browse to locate and select the third-party
library archive, then click Restore.
4. Inthe License Manager, do one of the following:
= To license the third-party library at this time, click Send, then include
all required information and send the email.
= To license the third-party library at a later time, click Cancel. You can
launch the licensing process at any time by performing steps 1 to 3.

The original setup code and user codes as well as four registration keys will be
returned via e-mail.

5. Upon reception, make sure the setup and user codes are the same as
those in the License Manager window, then copy and paste the
registration keys in their respective fields.

A.22.2 1/O configuration

The 1SaGRAF I/0O configuration library provides an easy way to initialise new
ISaGRAF projects with pre-defined 1/O configuration. An 1/O configuration defines:

e a set of I/O boards

o default values for I/O boards parameters

o default names for I/O channels

When a new ISaGRAF project is created with a library I/O configuration, the
corresponding /O connection is automatically set, and the /O variables
corresponding to channel names are automatically declared in the project dictionary.

The definition of an /O configuration is made with the 1ISaGRAF 1/O
Connection tool (the same tool used within a project). Refer to the "I/O Connection”
section in this manual for further information about how to use this tool. When
inserting a new 1/O board in the configuration, all the channels of the new board are
declared with standard default names. The standard default name of an I/O channel
has the following format:

<direction><type><slot_number>_<channel_number>
The first character indicates the direction of the 1/O channel:

input channel
output channel

The second character indicates the type of the I/O channel:

"X Boolean
"D".. analog
"M" message

Below are examples of a standard I/O channel names:
IXO_7 .o Boolean input - board #0 - channel #7

ICS Triplex ISaGRAF Inc. A-145

User's Guide

QD2_4................ integer output - board #2 - channel #4

The "Connect I/O channels" command of the /O Connection Editor is used to modify
the default name attached to an I/O channel.

A.22.3 1/0O complex equipment

All the channels of a single board have the same type (Boolean, analog or message)
and direction (input or output). Complex I/O equipment represents an I/O device with
channels of different types or directions. Complex I/0O equipment is represented as a
list of single I/O boards. It uses only one slot in the I/O connection rack list.

% To define complex 1/O equipment, the user has to define the list of single
boards, which define the I/O equipment. He also has to enter the detailed
parameters of each single board. The list of single I/O boards is entered through a
dialog box.

Pressing the "Append" button allows the user to add a single board at the end of the
current list. The "Insert" button is used to insert a new single board before the one
currently selected in the list. The "Delete" button removes the selected single board
from the list. The "Rename" and "Parameters" button are used to change the name
and the parameters of the selected single board. Refer to the following section for a
complete explanation of single board parameters. A complex I/O equipment can
group up to 16 single 1/O boards. The name of a single board (within an 1/O
equipment) cannot exceed 8 characters.

A.22.4 1/O board

The ISaGRAF 1/O board library defines a standard interface between the application
variables and the target hardware. During the description of the application, all the
1/0 variables are connected to the channels of the target I/0O boards. A name and an
"OEM key code" that identifies its supplier define an ISAGRAF 1/O board. Other 1/0
board parameters describe the I/O board topology (number of channels, channel
direction and type), and its hardware or software configuration.

L I/O board parameters

There are two different types of parameters for an 1/O board: common parameters
which are defined for any 1ISaGRAF library board, and OEM parameters which are
specific to the board implementation, provided by the hardware supplier. Common
parameters are entered in the upper part of the I/O board parameters definition box.
These parameters (plus the 1/0O board name) identify the ISaGRAF standard 1/0O
board interface.

The "OEM key code" is a simple number that defines the hardware supplier. All
the boards defined by the same supplier must have the same OEM key code. The
OEM key code is a 16 bit unsigned word, entered in a hexadecimal format. The
reserved OEM key code for ICS Triplex ISaGRAF is "1".

Main parameters define the topology of the I/O board. The number of channels
defines the number of available channels on the board. The type of the board is the
type of the variables that may be connected on the channels of the board. The

A-146 ICS Triplex ISaGRAF Inc.

User's Guide

direction defines whether variables connected on the board are input or output
variables.

Note: 1/0 variables of different types or directions cannot be grouped on the
same ISaGRAF /O board. This feature should require complex I/O equipment.

= The OEM parameters

The OEM parameters are entered in the lower part of the 1/0O board parameters
definition box. These parameters are defined by the I/O board hardware supplier and
are specific to the board. There are at most 16 OEM parameters for a board. A
board may have no OEM parameters. The ISaGRAF library manager allows the
hardware supplier to define the identification and the format of each parameter, and
the way the automation programmer enters it.

The box on the left contains the list of the OEM parameters. A name and a logical
number, from 0 to 15 identify each parameter. The area on the right contains the
detailed description of the parameter selected on the list. A parameter is selected in
the list in order to access to its complete description. Pressing the "Clear" button
resets the parameter description, and removes it from the parameter list. Warning:
this command cannot be "undone”.

The name of a parameter is used to identify the corresponding input field during the
1/0 board connection if the automation operator must define the field. The name of a
parameter must conform to the following rules:

o the maximum length of a name is 16 characters

o the first character must be a letter

» the following characters must be letters, digits or'_' character

The type of a parameter defines the internal format of the parameter, and its input
format during application /O connection. Below is the list of available internal

formats:

word. .. unsigned 16-bit word

long..... .. unsigned 32 bit word

word hexa.......... unsigned 16-bit word

long hexa........... unsigned 32-bit word

boolean.............. unsigned 16 bit word (only lowest bit is used)
character unsigned 16-bit word (only lowest byte is used)
string array of 16 bytes containing a null-terminated string
float.....cccoocuveennnns single precision 32 bit floating value

Below are available input formats:

word. ... unsigned decimal word

long..... .. decimal long word

word hexa.......... unsigned hexadecimal word
long hexa........... unsigned hexadecimal long word
boolean.. "true" or "false"

character .. single character
string ascii string (15 characters max)
float....ccccovvrnnenns single precision floating value

The "access" box is used to define how the parameter can be accessed by the end
user. If the "User defined" option is set, the parameter is shown as an input field

ICS Triplex ISaGRAF Inc. A-147

User's Guide

A.22.5

during the 1/O board connection. The OEM parameter default value is used as
default for the parameter editing. If the "Hidden" option is set, the parameter is a
constant and does not appear in the 1/O board connection box. The OEM parameter
default value defines the value of the constant parameter. The "Read only" option
indicates that the parameter is visible for the user, but cannot be modified. Its default
value is used as a constant value.

Functions and blocks written in IEC languages

ISaGRAF handles a library of functions and function blocks written in IEC
languages. The available languages to describe such a function or block are FBD
(Function Block Diagram), LD (Ladder Diagram), ST (Structured Text) or IL
(Instruction list). Note that LD and FBD languages can be mixed in the same
diagram. SFC language (Sequential Function Chart) cannot be used to describe a
function or a block in library. The language attached to a library element is selected
when the function is created, and cannot be changed later.

Compiling

Functions and blocks defined in the library must be compiled (verified) before they
can be used within an ISaGRAF project. Nothing else has to be changed on the
Library side concerning functions and blocks. Elements of the library will
automatically appear in box selection menu when using the LD/FBD graphic editor
within a project.

.& A function defined in the library can call other functions of the library.
However, the ISaGRAF system does not support recursive function calling. A
function block written in IEC language cannot call other function blocks (neither in
IEC nor in "C" language).

Entering source code

The source code of a library function or function block is entered using standard
ISaGRAF tools: graphic editor for LD or FBD programs, text editor for ST or IL
programs. Refer to the corresponding sections in this manual for more information
about these tools. The 1ISaGRAF Code Generator can be directly called from the
graphic or text-editing window, to compile the source code of a library function or
block.

Dictionary of local variables

A library function or function block can have local variables, and local defined words.
To access the variable declaration, the user must run the commands of the
"Dictionary" command of the "File" menu, in the editor window, while editing the
source code of the function.

.& A library function or function block cannot access a global variable or
function block instance. Local variables of a function should be initialised in the
function body.

A-148

ICS Triplex ISaGRAF Inc.

User's Guide

Local variables of a function block written in IEC language are copied (instanced)
each time the block is used in a project. Local variables of an instance keep their
values from one call to the other.

G Defining the interface

Functions or function blocks may have up to 32 parameters (input or output). A
function always has one (and only one) return parameter, which must have the same
name as the function, in order to conform to ST language writing conventions.

The list in the upper left side of the window shows the parameters, in the order of the
calling model: first the calling parameters, last the return parameters. The lower part
of the window shows the detailed description of the parameter currently selected in
the list. Any of the ISaGRAF data types may be used for a parameter. The return
parameters must be located after calling parameters in the list. Naming parameters
must conform to the following rules:

o the length of the name cannot exceed 16 characters

o the first character must be a letter

 the following characters must be letters, digits or underscore character

® naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the
return parameters are put at the end of the list.

A.22.6 "C" Functions and function blocks

The "C" functions and function blocks are computer functions called from the
automation application, according to the ST language function-calling interface.
Functions are synchronous processes. The |SaGRAF target application is
suspended during the function execution. Function blocks associate operations and
static hidden data. For example, a "counter" function block represents the counting
operation, as well as the counting result. Functions and function blocks may be used
to complete the standard automation language capabilities, or to access system
resources.

% The parameters definition box is used to define the name and the type of
each calling or return parameter of the function or function block. The "Edit" menu
commands are used to define the parameters of the selected function or function
block. A function can have up to 31 calling parameters, and always has one return
parameter. A function block can have up to 32 parameters, with any mix of call and
return parameters. Below is the correspondence between ISaGRAF types and "C"

types:

BOOLEAN unsigned long unsigned 32 bit word: 1=true / O=false
ANALOG long signed integer 32 bit word

REAL float single precision floating value

TIMER unsigned long unsigned integer 32 bit word (unit is 1 ms)
MESSAGE char* character string.

ICS Triplex ISaGRAF Inc. A-149

User's Guide

A.22.7

When a message value is passed onto a "C" function or function block, it cannot
contain null characters. The string passed to the "C" code is null-terminated.

Refer to the ISaGRAF Target User's Guide for further information on how to manage
the "C" source code of a function or a function block, and how to integrate a new
element in the ISaGRAF target system.

Conversion functions

A conversion function is a "C" function called by the ISaGRAF I/O manager each
time the analog variables using this conversion are input to or output from the
project.

The function creates the relationship between the electrical value of the variable
(read on the input sensor or sent to the output device) and its physical value (used
in the application expressions). The function is therefore divided into two parts: input
conversion and output conversion. The ISaGRAF library manager allows the user to
control the "C" source code of a conversion function.

A conversion can be used for an integer or real analog variable. This implies that
the conversion function interface is always defined by floating values. The interface
is the same for any conversion function. The "C" definition of this interface is made
in the "TACNODEF.H" definition file.

Refer to the ISaGRAF Target User's Guide for further information on how to manage
the "C" source code of a conversion function, and how to integrate a new element in
the ISaGRAF target system.

A-150

ICS Triplex ISaGRAF Inc.

User's Guide

A.23 Using the Archive utility

The 1SaGRAF archive utility enables the user to save the ISaGRAF projects and
libraries on diskettes or backup directory. The ISaGRAF archive manager is a dialog
box that can be called from ISaGRAF Project Management or Library Management
windows.

To create and maintain reliable archives, it is suggested that the following
guidelines be used:
* Write the name and description of the saved object on the disk sticker
* Do not save projects and libraries on the same diskette
* Do not save different projects on the same diskette

A.23.1 Calling the archive manager

The "Archive" dialog box can be called from the "Tools / Archive" menu of the
Project Management window, to save or restore either a project, or common data.
The "Archive" dialog box can also be run from the "Tools / Archive" command of the
ISaGRAF Library Manager, to save or restore elements of the library currently
selected in the Library Management window.

= Projects

A project is always saved in its entire form. All the components of the project
(program source files, object code and application executable code) are saved
together in the same archive file. Selection of the "compression" option reduces the
size of the project archive.

= Library elements

The elements of ISaGRAF libraries can be saved individually. All the components of
a library element (technical note, definition, interface, source code...) are saved
together in the same archive file.

- Common data

The "Tool / Archive / Common data" command of the Project Management window
enables the user to backup or restore the "common range" data existing in the
ISaGRAF Workbench. This command does not act on the ISaGRAF libraries. Below
is the list of the files that can be copied with this command:

common.eqy common defined words

oem.bat.............. user defined MS-DOS command file

These files are saved one by one on the archive disk, in their original form. The
corresponding archive files are never compressed.

ICS Triplex ISaGRAF Inc. A-151

User's Guide

A.23.2

A.23.3

A.23.4

Options

The path used for ISaGRAF archives is displayed at the bottom of the dialog box.
Press the "Browse" button to browse the disks and select another archive disk and
directory.

Archive location

Ah Browse I

When the "Compression" option is set, all the archive files created during a
"Backup" procedure are compressed. This option is very useful to reduce the size of
a large project archive file, and save it on only one diskette. Archive compression is
generally not needed for library components. The ISaGRAF Archive Manager
automatically recognises the status of an archive file (compressed or not) when
restoring the archive. This implies that the "compression" option has no effect for a
"Restore" procedure.

[Compreszs

Backup and restore

The "Workbench" list (on the left) shows the objects existing in the ISaGRAF
Workbench installed on the hard disk. The "Archive" list (on the right) shows the
objects saved on the specified archive disk and directory.

Backup

Saving an object on archive is achieved by selecting the object in the list on the left
(objects of the ISaGRAF workbench) and pressing the "Backup" button. More than
one object on the list can be selected. The "Backup" button is disabled when an
element is selected from the list on the right (restore mode).

Restore

Copying an object from the archive to the 1ISaGRAF Workbench is achieved by
selecting the object in the list on the right (archive objects) and pressing the
"Restore" button. More than one object on the list can be selected. The "Restore"
button is disabled when an element is selected from the list on the left (backup
mode).

Archive files

The ISaGRAF archive manager creates a unique archive file for each saved object.
The archive file has the same name as the object. Its file suffix indicates its type.
Below are the used suffixes:

Pia e project

A-152

ICS Triplex ISaGRAF Inc.

User's Guide

1/0 board

function in IEC language
function block in IEC language
C function

C function block

C conversion function

I/O configuration

I/0 equipment

ICS Triplex ISaGRAF Inc. A-153

User's Guide

A.24 Printing a complete document

A.241

The ISaGRAF Document Generator allows the user to build and print a complete
document for the selected project. It can be called by the "Project / Print"
commands of the Project Management or the Program windows to print a complete
document. The Document Generator is also run by the "Print" command of all other
ISaGRAF editors to print the contents of a single ISaGRAF document. However, the
Document Generator provides the same features in both cases.

The commands of the "Edit" menu are used to define the elements of the project
that must be inserted in the document. Doing this the user builds the "table of
contents" for the desired document. Any information about the project (programs,
variables, options, 1/0 connection...) may be inserted in the project document. No
information from another project or from ISaGRAF libraries may appear in this
document.

ﬁ The "File / Print" command generates the document and send it to the
printer, according to the specified table of contents. The "Print" job may take few
minutes to build and format the document. It is highly recommended to wait until
"Printing Job" is done in the ISaGRAF Document Generator window, before running
other commands of the ISaGRAF Workbench. Building the whole document may
require a large space on the hard disk. An error message will be displayed if the disk
is full. In such a case, the user will have to either free up disk space by removing
files, or reduce the size of the print job. When the "Print" command is run, a dialog
box appears. It allows the user to enter a note describing the actual print command.
Those notes are stored in a history file, and will be printed on the first page of any
future document (including the present one).

Customising the table of contents

The "Edit" menu contains the commands to define the "Table of Contents" of the
document. A choice of commands allow the user to use a default table (with all the
components of the project), build a specific table (with only some components) or
move items in the table and modify it.

The default list

The "Default list" command of the "Edit" menu defines a standard table of contents
for the document, which includes all the components of the project. The standard
table consists of:

- Project descriptor

- Hierarchy tree (links between programs)

- Source code for any program

- Diary file for any program

- Common definitions

- Global definitions

- Local definitions for any program

- Global variables

- Local variables for any program

- Application options

A-154

ICS Triplex ISaGRAF Inc.

User's Guide

L

R
iifiii

- I/0 Connection

- Lists of variables

- Conversion tables

- Condensed cross references
- Detailed cross references

- Declaration summary

- Network addresses map

- History of modifications

The table of contents can be saved on disk using the "File / Save" command. This
command is greyed when document generator is run from an ISaGRAF editor to
print a single document.

Cut and paste

Use "Edit / Cut" and "Edit / Paste" commands to move items in the list, in order to
customise the order of the table. The Document Generator allows multiple selection
so that a group of items may be cut and pasted.

Clearing the table

Use "Edit / Clear" command reset the table of contents, so that it can be totally
rebuilt using single item insertion.

Inserting items in the table

When the "Edit / Insert" command is run, the "Add item" dialog box appears. It
allows the user to insert items (components of the project) into the table of contents.
For an item relative to a program, use the "Program" combo box to select a program
name. Press the "Add" button to insert the selected item to the table of contents.
The same item can appear only once in the table.

A.24.2 Options

The commands of the "Options" menu are used to define and customise the format
of the generated document. Other options are directly available from buttons of the
Document Generator window:

 Front Page
[¢¥ Table of contents

When the "Font page" option is set, a header page is printed at the beginning of the
document, containing the project title and the history of printouts. When this option is
not set, the first item to be printed starts on the first page.

When the "Table of contents"” option is set, a table of contents is printed at the end
of the generated document.

Both options are initially unchecked when the Document Generator is run from a
"Print" command of an ISaGRAF editor (program, dictionary...)

ICS Triplex ISaGRAF Inc. A-155

User's Guide

I

SFC charts

The "Separate SFC levels" option directs the system to print, for each SFC
program, first the level 1 of the SFC (chart and comments), and then the level 2
programming. When this option is not checked, levels 1 and 2 appear together on
the same printout.

Page format

The "Page format" command of the "Options" menu is used to define the main
parameters operated by the Document Generator when formatting a page. The
following parameters can be specified:

e Left margin: (1 or 2 centimetres, or no margin)

e Page border: When this option is selected, a border is drawn around any printed
page.

Page title template

The "Page Title" command of the "Options" menu is used to define the contents of
the title box printed at the bottom of any page. The standard layout of this box is as
follows:

ﬂ.‘
o [Tt Project 000K (date)
Iestyiplex ¥ Test?
Textd| [page]

The first line of the main title (with the name of the 1ISaGRAF project), the current
date and the page number are automatically generated by the Document Manager,
and cannot be changed.

The three lines of text on the left side of the box (textl, text2, text3) and the second
line of the main title are user-defined. The user also can change the logo printed in
the box on the left. To use another logo, the user has to specify the pathname of a
bitmap image file (.BMP). The image can have any dimension. It will be stretched or
shrunk, according to the exact dimensions of the printed page. Clicking on the logo
area, in the dialog box, shows the new specified image. The image file must be on
the disk (at the specified directory and with the specified filename) when the "Print"
command is run.

Selecting character fonts

The "Text font" and "Title font" commands of the "Options" menu are used to
define the fonts of characters used when printing text, and titles for any item of the
document. The size and style of characters may also be selected for text and titles.
The selection of a font is made with the standard dialog box defined by Windows.
Any text (literal programs, names within diagrams...) will be printed with the selected
size, style and font of characters. Only titles will be printed with the font selected for
titles.

If the fonts of characters are not defined, the standard font of the printer will be used
for any text, with the following styles:

e "Normal" style for texts and names within diagrams

* "Bold" style for titles

A-156

ICS Triplex ISaGRAF Inc.

User's Guide

A.25 Password protection

The ISaGRAF Workbench includes a full data protection system, which enables the
user to protect with password projects and library elements. A library element can be
an 1/0O configuration, an 1/O board or complex equipment, a function or function block
written in IEC languages, a "C" function, function block or conversion function. A
password protection database is dedicated to one project or library element, and
cannot be shared between several ones.

= Protection levels

Within one project or library element, the user can define up to 16 access levels,
corresponding to different passwords. Access levels are sorted in a hierarchy
system. They are numbered from 0 to 15. The higher access level is numbered 0.
When a user knows a password, he can access all the items protected by the
corresponding access level, plus all the ones protected with lower levels. Each
elementary command or data of a project or library element can be separately
protected with an access level. For example, the "Make application code" command
from the ISaGRAF menus can be protected separately. Elementary data can be a
program, a list of options, the technical note of a library element, etc...

= Defining password protection

The "Set password" command of the ISaGRAF menus is used to define the
passwords and access levels for one project or one library element. This command
is called from the menus of the ISaGRAF Project Manager (for a project), or the
ISaGRAF Library Manager (for a library element). No password is required when first
running this command. If passwords are already defined, the user must enter the
highest level password he knows, before accessing this command. Upper level
passwords and protected items then cannot be modified. The "Set password"
command enables the user to define the passwords corresponding to the different
access levels, and to protect elementary commands or data with the defined levels.
Double clicking on a line of the upper list enters passwords (corresponding to
protection levels). The following box is used to enter a password.

Enter password E |

Level: 1)1}

Password: |pswl] |

oK I Cancel |

The list in the lower area shows the different items (data or functions) which can be
protected, and current protection level attached to either "read access" or "full

ICS Triplex ISaGRAF Inc. A-157

User's Guide

access" permissions. Assigning a protection level to "read" permission enables you
to prevent users without sufficient permission even to open or print a document.
Double click on a line in the lower list to set permissions for the selected item or
data. The following box is open:

Permizsions |
Hiztory of modifications
Full access: | 0o ey ;||
Read access: | (free access) ;||
| oK I Cancel |

Both permissions can be set either to "free access", or to a protection level defined
by a password. Full access permission cannot be attached to a level with less
priority than the one selected for read access.

Note that for some documents, naturally visible when using 1ISaGRAF Workbench,
such as project descriptor, read access cannot be protected with a password.

Accessing protected data

No password or user's name is asked when the Workbench is started. Each time a
user wants to have access to a protected data or function, he must enter the
required password in a dialog box.

If the user enters the required password (or a password attached to a higher access
level), he can continue normally. Each time a password is entered by the user, it is
stored in memory, so the user will not have to enter it again later. Stored passwords
are held each time that an ISaGRAF tool is run from another ISaGRAF tool (for
example, the Project Manager runs the Program Manager). Stored passwords are
lost when the last remaining ISaGRAF window is closed. Passwords entered during
project editing, or by using the Library Manager, or by using the Archive manager
cannot be shared. If the user enters a bad password, he cannot run the selected
function.

Links with the archive manager

When saving an object (project or library element) on archive disk, the data
protection item named "Backup on archive" is invoked. This corresponds to the
data protection system attached to the object in the Workbench (hard disk). No test
is performed on the data protection system of the object on the archive disk if it
already exists. The "Backup" command of the ISaGRAF Archive Manager saves the
data protection information with the object on the archive disk.

When restoring an object, which already exists in the Workbench (hard disk), the
data protection item, named "Overwrite with archive" is invoked. This corresponds
to the data protection system attached to the object in the Workbench (hard disk).
No test is performed on the data protection system of the object on the archive disk.
If this command is validated, the restored data protection information will then
replace the existing one on the hard disk.

A-158

ICS Triplex ISaGRAF Inc.

User's Guide

= Setting individual protection for variables and 1/0O channels

The 1SaGRAF workbench provides a complete data protection system based on
hierarchised passwords. Variable declaration and 1/0 connection can be globally
protected by a password. Additionally, ISaGRAF enables you to set individual
protection to any variable or /O channel. This assumes that:

- passwords are already defined in the password definition system (use the "Project
| Set password" command of the Project Management window) so that protection
levels are available for individual protection.

- you use protection levels with higher priority for individual protection compared to
global variable or 1/0 protection.

When a variable or an 1/0 channel has individual protection, a small icon is draw
close to its name in dictionary or I/O connection window.

Use the "Set protection” and "Remove protection" commands of the "Edit" menu
in dictionary or 1/0 connection windows to set or remove an individual protection for
selected variable or channel. Both commands ask you to enter a valid password so
that a protection level can be attached to the variable or channel. Then, each time
you want to change a variable or a connection to a channel having individual
protection you must enter a password with sufficient priority level.

Warning: if a variable or channel is protected with a level, and the corresponding
password is removed from protection system, and if no higher level password is
defined, variable or channel cannot be changed anymore unless a new password
with sufficient level is defined.

ICS Triplex ISaGRAF Inc. A-159

User's Guide

A.26 Advanced programming techniques

A.26.1

A.26.2

This chapter contains more information about the ISaGRAF Workbench and target
system. The user is advised to be familiar with the 1ISaGRAF tools and methods,
before reading this section.

More about ISaGRAF tools

When using the 1ISaGRAF editing tools, the user can press the right mouse button
to open a popup menu, which contains the main editing commands. The menu is
opened at the current position of the cursor. This is very useful to reduce mouse
operations during cut and paste commands.

The ISaGRAF tools support multiple execution. Although same tool cannot be
opened twice to edit the same document, it is possible to open different windows
with the same tool and edit different objects as parallel operations.

Other commands are available to find information about graphic buttons in toolbars.
Double click an empty area of a toolbar to display the contents of the toolbar as a
popup menu. Stay with the mouse cursor on a graphic button displays the
corresponding text command.

Locked I/Os and virtual I/Os

Defining an 1/0 board as virtual disconnects the processing of the physical 1/0
channels. When a board is defined as virtual, the ISaGRAF kernel operations are
not changed. The only difference is that input sensors are not read and output
devices are not updated. In this mode, it is possible to use the ISaGRAF debugger
to modify the input values. The Virtual attribute applies to a complete board. It is
programmed during the I/O board definition, before the application code generation.
The virtual attribute is a static feature, and is stored when the application is
stopped and restarted.

Another possibility is the I/0O variable locking. It consists of disconnecting one
physical device and the corresponding ISaGRAF 1/O variable. Variable locking and
unlocking is performed through the debugger. Variable locking is a dynamic
operation, and is not memorised when the application restarts. The lock operation
applies to only one variable (one 1/O channel) at a time. This is the summary of main
1/0 controlling features:

Virtual Attribute Lock command
selection tool 1/0 board connection debugger
definition static dynamic
selection mode board variable
application validation and tests maintenance

The following chart explains the 1/O data flow between the ISaGRAF tasks:

A-160

ICS Triplex ISaGRAF Inc.

User's Guide

INPUTS » Run time > ouTPUTS
DATA
Kernd DATA
1/O driver BASE soplication BASE 1/ diver
User OEM User OEM
Input
devices
VICES N , ——>
Output
devices
Debugger
> % —»

When an input variable is locked, the various accesses to the database are not

changed, but the input device is disconnected. Input values can be set with the
debugger and processed by the ISaGRAF kernel:

INPUTS » Run time
DATA
BASE Kemd)
User OEM application
(user oem key)
Input
devices
@‘{}
Not Debugger
locked S

When an output variable is locked, the run-time kernel and the output driver are

driver, with the ISaGRAF debugger:

disconnected. In this case, access is still possible to the output device, via the output

Run time ¥ outPUTS
Kernd DATA
. . BASE
application Not
locked
‘7
Debugger

User OEM
(user oem key)

—
Output
devices

When setting the virtual attribute for an input the input database and the associated
input devices are disconnected. A virtual I/O driver replaces the real one.

ICS Triplex ISaGRAF Inc.

A-161

User's Guide

Virtua OEM
(oem key 0)
'Bi‘#}s » Run time
BASE Kerr.lel _
application
User OEM
(user oem key)
Input
devices Not
o Debugger
virtual 99

Setting the virtual attribute follows the same rules for an input board or an output
board. For output boards, the 1ISaGRAF kernel updates the output database. This

database and the associated output devices are, however, disconnected. A virtual
1/O driver replaces the real one.

Virtual OEM
(oem key 0)
Run time — oUTPUTS
Kernd DATA
. . BASE
application
User OEM
(user oem key)
] Not
: —
Debugger virtual Output
devices
To summarise all possibilities:
Virtud OEM Virtud OEM
(oemkey 0) (oemkey 0)
INPUTS Run time F outPuTS
DATA Kernel DATA
BAsE application BAsE Not C/
locked
User OEM User OEM
(user oem key) (user oem key)
Inpt /O/fk — N
devices ot
— ¥ Debi —
{)‘rO* C‘ﬁt‘ual ugger virtual ;):}ITS

Not
locked

A-162

ICS Triplex ISaGRAF Inc.

User's Guide

A.26.3 PC-PLC link validation

A.26.4

Most of the problems related to poor communication between the 1SaGRAF
workbench and the target PLC are represented in the debugger window by the
"disconnected" status message. Before any diagnostic tests are performed, the
communication should be validated when no application is active in the target
PLC. This way the serial communication link can be validated on its own, isolating it
from execution related effects.

The "C" language, used for description of the conversion functions and C functions,
allows direct access to the target system. A programming error in such a software
component may generate system errors or incorrect ISaGRAF system behavior.
Such problems may occur when I/O drivers are developed with the 1ISaGRAF I/0
toolkit. System errors, for example, may be caused if an I/O board is connected on
an invalid bus address. The following table gives a synthetic summary of error
diagnostics:

status context Diagnostic
"disconnected"” - target is not running
(before - no cable / invalid cable
download) - invalid link parameters
- ISaGRAF target badly installed
"disconnected"” cycle to cycle | -invalid I/O configuration
(after download) starting mode | - system crash
real time - invalid I/O configuration
starting mode | - system crash (due of "C" programming)
"no application" - application not downloaded
- application not started
(due of "C" programming)
- Intel/Motorola mismatch
- Invalid target version

ISaGRAF directories

The ISaGRAF Workbench works on a dedicated disk directory structure. The user
during the installation of ISaGRAF specifies the root directory of this architecture.
The default name for the 1SaGRAF root directory is ISAWIN. This is the standard
disk architecture created by the installation program:

ICS Triplex ISaGRAF Inc. A-163

User's Guide

\ISAWIN |_—|APL

These are the standard 1ISaGRAF sub-directories
DIRECTORY CONTENTS

APL root directory for the ISaGRAF projects
each project corresponds to one sub directory
which contains all the data of the project
other directories may exist for other project groups. ISaGRAF
installation program creates "SMP" directory where are stored
samples applications.

COM "common" range data

Data can be used by any project
EXE ISaGRAF programs and help files
LIB ISaGRAF libraries:

- lists of elements
- parameters or interface for each element
- technical notes

LIB\IOC source code for I/O configurations
LIB\FNC source code of functions written in IEC languages
LIB\FBL source code of function blocks written in IEC languages
LIB\SRC source code for conversions and C functions
LIB\DEFS source header for conversions and C functions
LIB\RELS Conversions and C functions object code
LIB\DEV command files for developing "C" libraries
makefiles, link lists, etc...
TMP Temporary files: sub-directories of TMP are reserved for the

ISaGRAF Code Generator and cannot be deleted.

The sub-directories can be moved to other disk locations. When the user has a non-
standard architecture, the pathnames of the sub-directories should be declared in
the WSO001 section, in the ISA.ini initialisation file, in the EXE sub-directory of
ISaGRAF. Here are the entries of the WS001 section:

Isa root directory for ISaGRAF architecture
IsaExe root directory for ISaGRAF programs and help files
IsaApl root directory for ISaGRAF projects

A-164 ICS Triplex ISaGRAF Inc.

User's Guide

IsaTmp directory for temporary files
IsaSrc directory for library source code
IsaDefs directory for library source headers

Note that if you change the IsaTmp entry to another directory, you must create the
sub-directories OBJS, RELS and DATA in the new directory. The following example
uses the entries of the WS001 section to redefine the standard ISaGRAF disk
architecture:

;file c:\ISAWIN\EXE\ISA.ini

[WS001]

Isa=c:\isawin
IsaExe=c:\isawin\exe
IsaApl=c:\isawin\apl
IsaTmp=c:\isawin\tmp
IsaSrc=c:\isawin\lib\src
IsaDefs=c:\isawin\lib\defs

When you want to add "C" functions or function blocks to the ISaGRAF target, the
\ISAWIN\LIB\DEV directory is used to store development files: command files,
makefiles, maps, etc... The \ISAWIN\LIB\RELS directory is used to store the object
files generated during "C" compiling, and the ISaGRAF "C" libraries required for
LINK operations.

A.26.5 Application symbols

Each object of an 1ISaGRAF application is referenced by a name (entered during
variable declaration) and an internal virtual address, calculated by the code
generator. The virtual address of a variable is not its network address entered
during the declaration of the variable. Virtual addresses are used for communication
work, and special "C" applications using the OEM option. When the ISaGRAF code
generator is run, it makes an ASCII file with the logical correspondence between
names and virtual addresses for all the objects (variable, programs, steps...) of the
project. This file can be easily interrogated for information about the ISaGRAF static
database from any user's application. The file is named "APPLI.TST" and is located
in the directory of the ISaGRAF project: "\ISAWIN\APL\proname" (proname is the
name of the project). This section describes the detailed format of the "APPLI.TST"
file. The main notations used for the following descriptions, is shown below:

VA virtual address
ATTR attribute of a variable
USP "C" function

Possible values for the attributes of a variable are shown below. Such values occur
in the "attributes" fields:

+X internal variable

+C read-only internal variable
+I input variable

+0 output variable

ICS Triplex ISaGRAF Inc. A-165

User's Guide

All the numbers, except virtual addresses, are expressed as decimal integers. The
virtual addresses (VA) are expressed as hexadecimal 4 digit nhumbers, and are
preceded by the character "!". For example:

123 this is a decimal number
1A003 this is an hexadecimal virtual address

The main structure of the file "APPLIL.TST" is shown below. The file is structured as
a list of blocks. A block is a list of records. Each record is described on one line of
text. Each block begins with a header, put on one line of text.

Start block
description blocks
end block

The general syntax of one block is shown below:

@ <block_name> <arguments>
#record. ..
#record. ..

The structure of the first block, containing the main information about the application,
is shown below:

@ISA_ SYMBOLS, <appli_crc>

#NAME, <appli_names>, <versions>

#DATE, <creation date>

#SIZE, G=<nbprg>, S=<nbstep>, T=<nbtras>,L=0, P=<nbpro>, V=<nbvar>
#COMMENT, ICS Triplex ISaGRAF

appli_crc............ application symbols checksum
appli_name........ name of the application
VErSion.....ccoene ISaGRAF workbench version number

creation_date. ... application generation date

nbprg number of programs
nbstep... number of SFC steps
nbtra number of SFC transitions

nbpro . .. number of "C" functions used
nbvar..........cee.... total number of variables

The structure of the last block, which signals the end of the file, is shown below:

@END_ SYMBOLS

The structure of the block used to describe the programs of the application, is shown
below:

@PROGRAMS, <nbprg>
#<va>, <name>

#...

A-166

ICS Triplex ISaGRAF Inc.

User's Guide

nbprgccocveeene number of programs defined in this block
va..... .. virtual address of the program
NamMeccccerveneene program name

The structure of the block used to describe the SFC steps of the application is
shown below. Note that there is one virtual step defined for each non-SFC program:

@STEPS, <nbsteps>
#<va>, <name>, <fathers>

#...

nbsteps.............. number of steps defined in this block
(V2 WU virtual address of the step

name .. step name

fathercccee. virtual address of the father

The structure of the block used to describe the SFC transitions of the application, is
shown below:

@TRANSITIONS, <nbtrans>
#<va>, <name>, <fathers>

#...

nbtrans number of transitions defined in this block
\VZ: R virtual address of the transition
name.........ccoo... transition name

fathercc..... virtual address of the father

The structure of the block used to describe the Boolean variables of the application,
is shown below:

@BOOLEANS, <nb_boo >
#<va>, <name>, <attrs>, <programs>, <eq false>,<eq true>
#...

and if variable number exceeds 4095:
X#(1.<varno>) ,<name>, <attr>, <programs>,<eq false>,<eq true>

number of variables in this block

virtual address of the variable

range of the address (within Boolean data type)
.. name of the variable

.. attribute of the variable

.. virtual address of the parent program

or "10000" for a global variable

string used for false value

eqg_true string used for true value

The structure of the block used to describe the analog variables of the application, is
shown below:

ICS Triplex ISaGRAF Inc. A-167

User's Guide

@ANALOGS, <nb_ana>
#<va>, <name>, <attrs>, <program>, <formats>, <unit>

#...
and if variable number exceeds 4095:
X# (2.<varno>) ,<names, <attr>, <programs>, <format>, <units>

number of variables in this block

virtual address of the variable

range of the address (within analog data type)
name of the variable

attribute of the variable

virtual address of the parent program

.. or "10000" for a global variable

="I" for an integer variable

........... ..="F" for a real variable

unit.. .. unit string

The structure of the block used to describe the timer variables of the application, is
shown below:

@TIMERS, <nb_tmr>
#<va>, <name>, <attrs>, <program>

#...
and if variable number exceeds 4095:
X# (3 .<varno>) , <names>, <attr>, <program>

number of variables in this block

.. virtual address of the variable

range of the address (within timer data type)
name of the variable

attribute of the variable (always +X: internal)
virtual address of the parent program

or "!0000" for a global variable

The structure of the block used to describe the message variables of the application,
is shown below:

@MESSAGES, <nb_msg>
#<va>,<name>,<attr>,<program>,<max_len>
#...

and if variable number exceeds 4095:

X# (4.<varno>) ,<name>, <attrs>, <programs>, <max_lens>

number of variables in this block
virtual address of the variable
range of the address (within message data type)

A-168 ICS Triplex ISaGRAF Inc.

User's Guide

name of the variable

attribute of the variable

virtual address of the parent program
or "10000" for a global variable
maximum length (declared capacity)

The structure of the block used to describe the "C" functions used in the application,
is shown below:

@USP, <nb_usp>
#<va>, <name>

number of C functions in this block
virtual address of the C function
name of the C function

The structure of the block used to describe the "C" function block instances used in
the application, is shown below:

@FBINSTANCES, <nb_fb>
#<va>, <inst_name>, <fb_name>

#.

nb_fb...oooennn number of instances of a C function blocks in this block
(V2 R RURRR virtual address of the C function block instance
inst_name name of the C function block instance

fb_name... name of the reference C function block

A.26.6 Limits of ISaGRAF "LARGE" (WDL) workbench

There are some limitations for the objects used in the 1ISaGRAF Workbench. Of
course, many other practical limits are due to the configuration of the computer used
(available memory and disk space), and the capabilities of the 1SaGRAF target
system (available memory, available hardware and software resources...). The
following numbers absolute limits that cannot be exceeded.

= For a project:
Object Maximum Notes
Programs 255 grouping main,
sub and child programs
Levels in the hierarchy 20

The number of projects installed on the Workbench is only limited by the available
space on the hard disk.

ICS Triplex ISaGRAF Inc. A-169

User's Guide

= For names:
Name for: Maximum Notes
Project 8 char
Program 8 char
Variable 32 char + 60 characters for comment
Defined word label 16 char
Defined equivalence 255 char + 60 characters for comment
Conversion table 16 char
List of variables 16 char
function / f.block (lib) 8 char this applies to C functions,
C function blocks
or functions written in IEC languages
function parameter (lib) 16 char this applies to C functions,
C function blocks
or functions written in IEC languages
10 board 8 char
10 configuration 8 char
Board oem parameter 16 char
Conversion function 8 char
= Editing (for one program):
Object Maximum Notes
SFC rows 600
SFC columns 20
SFC steps 4095 for the whole project, grouping steps,
initial steps,
beginning and ending steps
SFC transitions 4095 for the whole application
LD/FBD editing 200 cols
2000 rows this is the size of the editing area
in cell units.
Quick LD editing no limit limits are imposed by the PC capacity
IL labels 251 in the same IL program
Text editing 40KBytes or less according to
the system configuration
= For the dictionary (for one project):
Object Maximum Notes
Boolean variables 65535
Analog variables 65535 grouping integer and real variables
Timers 65535
Message variables 65535
Defined words 4095 in the same list (same range)
Defined words 255 used in the same program
Conversion tables 127 used in the application
Points in one table 32 defined in the same conversion table
A-170 ICS Triplex ISaGRAF Inc.

User's Guide

The limits given for maximum number of Boolean, analog or message variables
group internal, input and output variables. It also includes all hidden temporary or
variables allocated by compilers. The number of variables edited together (same
type, same scope), in the dictionary editor cannot exceed 16000. Depending on PC
configuration, the limit can be less than 16000. The application cannot run on an
ISaGRAF target version V3.21 or earlier if the total number of variable for one type
exceeds 4095. The standard "Modbus" link using network addresses cannot be used
if number of variables for one type exceeds 4095.

= IO connections:
Object Maximum Notes
10 Boards 256 defined for the same application

(boards or complex equipments)

Number of I/O boards including single boards and items of complex equipments
cannot exceed 256.

10 channels 128 on the same board
- For libraries:

Object Maximum Notes

Functions (IEC Lang.) 255 installed together in the library

Function blocks

(IEC lang.) 255 installed together in the library

C functions 255 installed together in the library

C function blocks 255 installed together in the library

function blocks

instances 4095 for the same type of function block
in the same application

Function input parameters 31 this applies to C functions and
functions written in IEC languages

Function block parameters 32 freely distributed between input and

output parameters.
At least 1 output parameter

is required.
Conversion function 128 installed together in the library
10 configurations 255 installed together in the library
10 boards 255 installed together in the library
Complex IO equipt. 255 installed together in the library

Board oem parameters 16

ICS Triplex ISaGRAF Inc. A-171

Language Reference

B. Language Reference

B-172 ICS Triplex ISaGRAF Inc.

Language Reference

B.1 Project architecture

An 1SaGRAF project is divided into several programming units called programs. The
programs of the project are linked together in a tree-like architecture. Programs can be
described using any of SFC, FC (Flow Chart), FBD, LD, ST or IL graphic or literal languages.

B.1.1 Programs

A program is a logical programming unit, which describes operations between variables of
the process. Programs describe either sequential or cyclic operations. Cyclic programs are
executed at each target system cycle. The execution of sequential programs follows the
dynamic rules of either the SFC language or the FC language.

Programs are linked together in a hierarchy tree. Programs placed on the top of the hierarchy
are activated by the system. Their father activates sub-programs (lower level of the hierarchy).
A program can be described with any of the available graphic or literal following languages:

Sequential Function Chart (SFC) for high level programming
Flow Chart (FC) for high level programming

Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for Boolean operations only
Structured Text (ST) for any cyclic operations

Instruction List (IL) for low level operations

The same program cannot mix several languages, except LD and FBD can be combined in
one diagram.

B.1.2 Cyclic and sequential operations

The hierarchy of programs is divided into four main sections or groups:

Begin programs executed at the beginning of each target cycle
Sequential programs following SFC or FC dynamic rules

End programs executed at the end of each target cycle
Functions set of non-dedicated sub-programs

Programs of the 'Begin' or 'End' sections describe cyclic operations, and are not time
dependent. Programs of the 'Sequential' section describe sequential operations, where the
time variable explicitly synchronises basic operations. Main programs of the '‘Begin' section
are systematically executed at the beginning of each run time cycle. Main programs of the
'End’ section are systematically executed at the end of each run time cycle. Main programs of
the 'Sequential’ section are executed according to either the SFC or the FC dynamic rules.

Programs of the "Functions" section are sub-programs that can be called by any other
program in the project. A program of the "Function" section can call another program of this
section.

ICS Triplex ISaGRAF Inc. B-173

Language Reference

Main and child programs of the sequential section must be described with SFC or FC
language. Programs of cyclic sections (begin and end) cannot be described with SFC or FC
language. Any program of any section may own one or more sub-programs. Any program of
the sequential section may own one or more SFC or FC child programs (according to its own
programming language). Sub-programs cannot be described with SFC or FC language.

Programs of the Begin section are typically used to describe preliminary operations on input
devices to build high level filtered variables. The programs of the Sequential section
frequently use such variables. Programs of the End section are typically used to describe
security operations on the variables operated on by the Sequential section, before sending
values to output devices.

B.1.3 Child SFC and FC programs

Any SFC program of the sequential section may control other SFC programs. Such low-level
programs are called child SFC programs. A child SFC program is a parallel program that
can be started, killed, frozen or restarted by its parent program. The parent program and child
program must both be described with the SFC language. A child SFC program may have local
variables and defined words.

When a parent program starts a child SFC program, it puts a SFC token (activates) into each
initial step of the child program. This command is described with the GSTART statement.
When a parent program kills a child SFC program, it clears all the tokens existing in the steps
of the child. Such a command is described with the GKILL statement.

When a parent program freezes a child SFC program, it suspends its execution. The
suspended program can then be restarted using the GRST statement.

Any FC program of the sequential section may control other FC sub-programs. A FC father
program is blocked (waits) during execution of a FC sub-program. It is not possible that
simultaneous operations are done in father FC program and one of its FC sub-programs.

B.1.4 Functions and sub-programs

Its parent program drives a sub-program or a function execution. The execution of the parent
program is suspended until the sub-program or the function ends:

L -
Y

main sub-programs

™~

Any program of any section may have one or more sub-programs. A sub-program is owned by
only one father program. A sub-program may have local variables and defines. Any language
but SFC or FC can be used to describe a sub-program. Programs of the "Functions" section
are sub-programs that can be called by any other program in the project. Unlike other sub-

B-174 ICS Triplex ISaGRAF Inc.

Language Reference

programs, they are not dedicated to one father program. A program of the "Function" section
can call another program of this section. A function can be located in the Library.

Warning: The 1ISaGRAF system does not support recursive function calls. A run time error
will occur if a program of the "Functions" section is called by itself or by one of its called sub-
program.

Warning: A function or sub-program does not "store" the local value of its local variables. A
function or sub-program is not instantiated and so can not call function blocks.

The interface of a sub-program must be explicitly defined, with a type and a unique name for
each of its calling or return parameter. In order to support the ST language convention, the
return parameter must have the same name as the sub-program.

The following table shows how to set the value of the return parameter in the body of a sub-
program, in the different languages:

ST: assign the return parameter using its name
(the same name as the sub-program):

subprog_name := <expression>;

IL: the value of the current result (IL register)
at the end of the sequence is stored in the return parameter:

LD 10
ADD 20 (*return parameter value = 30 *)

FBD: set the return parameter using its name:

—] ——d

1 —subprog_name

LD: use a coil symbol with the name of the return parameter:

subprog_name
|] | M) I
I_{ I 11 N\ |

B.1.5 Function blocks

Function blocks can use the languages: LD, FBD, ST or IL. Function blocks are instantiated. It
means local variables of a function block are copied for each instance. When calling a block in
a program, you actually call the instance of the block: the same code is called but the data
used are the one which have been allocated for the instance. Values of the variables of the
instance are stored from one cycle to the other.

ICS Triplex ISaGRAF Inc. B-175

Language Reference

(* ST programming *) Function Block

(* FB1isadeclared instance implementation

of the SAMPLE function block *)

FB1(high, value, low, 1.0); > Code INSTANCE
high alarm:= FBL.QH: —{ DATA

low_adarm:=FB1.QL;
any_dam:=FB1.Q;

A2 2 4

Warnings:

- A function block written with one of the IEC languages can not call other function blocks: the
instantiation mechanism only manages the local variables of the block itself. Here is the list of
standard function blocks that you cannot use inside an IEC function block:

SR, RS, R_Trig, F_Trig, SEMA, CTU, CTD, CTUD, TON, TOF, TP, CMP, Stackint,
AVERAGE, HYSTER, LIM_ALRM, INTEGRAL, DERIVATE, BLINK, SIG_GEN

- For the same reason, you can not use Positive or Negative contact or coils, or Set and Reset
coils.

- TSTART and TSTOP functions to start and stop timers cannot be used in a function block for
3.0x targets. It works since the 3.20 target.

- When you need loop in your function block, you must use local variable before doing the
loop. See the example below:

This will not work: This is OK:

>=

—L >=1 | —L >=1
& j E & j

—| IntResult W

A program can be described with any of the following graphic or literal languages:

B.1.6 Description language

Sequential Function Chart (SFC) for high level operations
Flow Chart (FC) for high level operations

Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for Boolean operations only
Structured Text (ST) for any cyclic operations

Instruction List (IL) for low level operations

B-176 ICS Triplex ISaGRAF Inc.

Language Reference

The same program cannot mix several languages. The language used to describe a program
is chosen when the program is created, and cannot be changed later on. The exception is that
it is possible to combine FBD and LD in a single program.

B.1.7 Execution rules

ISaGRAF is a synchronous system. A clock triggers all the operations. The basic duration of
the clock is called the cycle timing:

Cycle > —
timing : Programmed ~ Used Free

Basic operations processed during a target cycle are:

Scan INPUT variables

Process ‘Begin’ section programs

|SaGRAF Process ‘' Sequential’ section programs
target cycle according to SFC/FC evolution rules

Process ‘End’ section programs

Update OUTPUT devices

This system makes it possible to:

- guarantee that an input variable keeps the same value within a cycle,

- guarantee that an output device is not updated more than once in a cycle,
- work safely on the same global variable from different programs,

- estimate and control the response time of the complete application.

ICS Triplex ISaGRAF Inc. B-177

Language Reference

B.2 Common objects

These are main features and common objects of the ISaGRAF programming database. Such
objects can be used in any program written with any of the SFC, FC, FBD, LD, ST or IL
languages.

B.2.1 Basic types

Any constant, expression or variable used in a program (written in any language) must be
characterised by a type. Type coherence must be followed in graphic operations and literal
statements. These are the available basic types for programming objects:

BOOLEAN: logic (true or false) value

ANALOG: integer or real (floating) continuous value
TIMER: time value

MESSAGE: character string

Note: Timers contain values less than one day and cannot be used to store dates.
B.2.2 Constant expressions

Constant expressions are relative to one type. The same notation cannot be used to represent
constant expressions of different types.

B.2.2.1 Boolean constant expressions

There are only two Boolean constant expressions:

TRUE is equivalent to the integer value 1
FALSE is equivalent to the integer value 0

"True" and "False" keywords are case insensitive.
B.2.2.2 Integer analog constant expressions

Integer constant expressions represent signed long integer (32 bit) values: from -2147483647
to +2147483647. Integer analog constants may be expressed with one of the following bases.
Integer constants must begin with a prefix that identifies the bases used:

Base Prefix Example
DECIMAL (none) -908
HEXADECIMAL "16#" 16#1A2B3C4D
OCTAL " 8#" 8#1756402
BINARY " 2#" 2#1101_0001_0101_1101

B-178 ICS Triplex ISaGRAF Inc.

Language Reference

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance, and is used to increase constant expression readability.

B.2.2.3 Real analog constant expressions

Real analog constant expressions can be written with either decimal or scientific
representation. The decimal point ('.") separates the integer and decimal parts. The decimal
point must be used to differentiate a real constant expression from an integer one. The
scientific representation uses the 'E' or 'F' letter to separate the mantissa part and the
exponent. Exponent part of a real scientific expression must be a signed integer value from -
37 to +37. Below are examples of real analog constant expressions:

3.14159 -1.0E+12
+1.0 1.0F-15
-789.56 +1.0E-37

The expression "123" does not represent a real constant expression. Its correct real
representation is "123.0".

B.2.2.4 Timer constant expressions

Timer constant expressions represent time values from 0 second to 23h59m59s999ms. The
lowest allowed unit is a millisecond. Standard time units used in constant expressions are:

Hour The "h" letter must follow the number of hours

Minute The "m" letter must follow the number of minutes
Second The "s" letter must follow the number of seconds
Millisecond The "ms" letters must follow the number of milliseconds

The time constant expression must begin with "T#" or "TIME#" prefix. Prefixes and unit letters
are case insensitive. Some units may not appear. These are examples of timer constant
expressions:

T#1H450MS 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

The expression "0" does not represent a time value, but an analog constant.
B.2.2.5 Message string constant expressions

String or message constant expressions represent character strings. Characters must be
preceded by a quote and followed by an apostrophe. For example:

'THIS IS A MESSAGE'
Warning: The apostrophe "' character cannot be used within a string constant expression. A

string constant expression must be expressed on one line of the program source code. Its
length cannot exceed 255 characters, including spaces.

ICS Triplex ISaGRAF Inc. B-179

Language Reference

Empty string constant expression is represented by two apostrophes, with no space or tab
character between them:

" (*this is an empty string *)

The special character dollar (‘'$"), followed by other special characters, can be used in a string
constant expression to represent a non-printable character:

Sequence Meaning ASCII Example
(hexa)

$$ '$' character 16#24 'l paid $$5 for this'

$ apostrophe 16#27 ‘Enter $'Y$' for YES'
$L line feed 16#0a 'next $L line'

$R carriage return 16#0d ' llo $R He'

$N new line 16#0d0a 'This is a line$N’

$P new page 16#0c 'lastline $P first line'
$T tabulation 16#09 ‘name$Tsize$Tdate'

$hh () any character 16#hh 'ABCD = $41$42$43%$44'

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.
B.2.3 Variables

Variables can be LOCAL to one program, or GLOBAL. Local variables can be used by one
program only. Global variables can be used in any program of the project. Variable names
must conform to the following rules:

name cannot exceed 16 characters

first character must be a letter
following characters can be letters, digits or the underscore character

B.2.3.1 Reserved keywords

A list of the reserved keywords is shown below. Such identifiers cannot be used to name a
program, a variable or a "C" function or function block:

A ANA, ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT,
ATAN,
B BCD_TO_BOOL, BCD_TO_INT, BCD_TO REAL, BCD_TO_STRING,

BCD_TO_TIME, BOO, BOOL, BOOL TO_BCD, BOOL_TO_INT,
BOOL_TO_REAL, BOOL_TO_STRING, BOOL_TO_TIME, BY, BYTE,

CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,
DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DT, DWORD,

ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF,
END_PROGRAM, END_REPEAT, END_RESSOURCE, END_STRUCT,
END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FEDGE, FIND, FOR, FUNCTION,

G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,

mao O

B-180 ICS Triplex ISaGRAF Inc.

Language Reference

ooz r <«

—

xs <cC

IF, INSERT, INT, |INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL,
INT_TO_STRING, INT_TO_TIME,

JMP, JMPC, JMPCN, JMPN, JMPNC,

LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,

MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,

NE, NOT,

OF, ON, OPERATE, OR, OR_MASK, ORN,

PROGRAM

R, REDGE, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD,
REAL_TO_BOOL, REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME,
REDGE, REPEAT, REPLACE, RESSOURCE, RET, RETAIN, RETC, RETCN,
RETN, RETNC, RETURN, RIGHT, ROL, ROR,

S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD,

STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL,
STRING_TO_TIME, STRUCT, SUB, SYS_ERR_READ, SYS_ERR_TEST,
SYS_INITALL, SYS_INITANA, SYS_INITBOO, SYS_INITTMR,

SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO, SYS_RESTTMR,
SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO, SYS_SAVTMR,
SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM,
SYS_TOVERFLOW, SYS_TRESET, SYS_TWRITE, SYSTEM,

TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD,
TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING,
TMR, TO, TOD, TRUE, TSTART, TSTOP, TYPE,

UDINT, UINT, ULINT, UNTIL, USINT,

VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,
VAR_INPUT, VAR_OUTPUT,

WHILE, WITH, WORD,

XOR, XOR_MASK, XORN

All keywords beginning with an underscore ('_") character are internal keywords and must not
be used in textual instructions.

B.2.3.2 Directly represented variables

ISaGRAF enables the use of directly represented variables in the source of the programs to
represent a free channel. Free channels are the ones, which are not linked to a declared /O
variable. The identifier of a directly represented variable always begins with "%" character.

Below are the naming conventions of a directly represented variable for a channel of a single
board. "s" is the slot number of the board. "c" is the number of the channel.

%IXs.c
%IDs.c
%ISs.c
%QXs.c
%QDs.c
%QSs.c

free channel of a Boolean input board
free channel of an integer input board
free channel of a message input board
free channel of a Boolean output board
free channel of an integer output board
free channel of a message output board

Below are the naming conventions of a directly represented variable for a channel of a
complex equipment. "s" is the slot number of the equipment. "b" is the index of the single
board within the complex equipment. "c" is the number of the channel.

ICS Triplex ISaGRAF Inc. B-181

Language Reference

%IXs.b.c free channel of a Boolean input board
%IDs.b.c free channel of an integer input board
%ISs.b.c free channel of a message input board
%QXs.b.c free channel of a Boolean output board
%QDs.b.c free channel of an integer output board
%QSs.b.c free channel of a message output board

Below are examples:

%QX1.6 6th channel of the board #1 (Boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.
B.2.3.3 Boolean variables

Boolean means logic. Such variables can take one of the Boolean values: TRUE or FALSE.
Boolean variables are typically used in Boolean expressions. Boolean variables can have one
of the following attributes:

Internal: memory variable updated by the program

Constant: read-only memory variable with an initial value

Input: variable connected to an input device (refreshed by the system)
Output: variable connected to an output device

Warning: When declaring a Boolean variable, strings can be defined to replace ‘true’ and
‘false’ values during debug. Those strings cannot be used in the programs unless entered as
'defined words' for the language.

B.2.3.4 Analog variables

Analog means continuous. Such variables have signed integer or real (floating) values.
Available formats for an analog variable are:

Integer 32 bit signed integer: from -2147483647 to +2147483647
Real standard IEEE 32 bit floating value (single precision)
1 sign bit + 23 mantissa bits + 8 exponent bits

REAL analog exponent value cannot be less than -37 or greater than +37. Analog variables
can have one of the following attributes:

Internal memory variable updated by the program

Constant: read-only memory variable with an initial value

Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

Note: When a real variable is connected to an I/O device, the corresponding I/O driver
operates the equivalent integer value.

B-182 ICS Triplex ISaGRAF Inc.

Language Reference

Warning: Integer and real analog variables or constant expressions cannot be mixed in the
same analog expression.

B.2.3.5 Timer variables

Timer means clock or counter. Such variables have time values and are typically used in time
expressions. A timer value cannot exceed 23h59m59s999ms and cannot be negative. Timer
variables are stored in 32 bit words. The internal representation is a positive number of
milliseconds.

Timer variables can have one of the following attributes:

Internal memory variable managed by the program, refreshed by ISaGRAF system
Constant: read-only memory variable with an initial value

Warning: Timer variables cannot have the INPUT or OUTPUT attributes.

Timer variables can be automatically refreshed by the ISaGRAF system. When a timer is
active, its value is automatically increased according to the target system real time clock. The
following statements of the ST language can be used to control a timer:

TSTART starts automatic refresh of a timer
TSTOP stops automatic refresh of a timer

B.2.3.6 Message string variables

Message or string variables contain character strings. The length of the string can change
during process operations. The length of a message variable cannot exceed the capacity
(maximum length) specified when the variable is declared. Message capacity is limited to 255
characters. Message variables can have one of the following attributes:

Internal memory variable updated by the program

Constant: read-only memory variable with an initial value

Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

String variables can contain any character of the standard ASCII table (ASCII code from 0 to
255). The null character can exist in a character string. Some "C" functions of the standard
ISaGRAF library will not correctly operate messages, which contain null (0) characters.

B.2.4 Comments

Comments may be freely inserted in literal languages such as ST and IL. A comment must
begin with the special characters "(*" and terminate with the characters "*)". Comments can be
inserted anywhere in an ST program, and can be written on more than one line.

These are examples of comments:

counter := ivalue; (* assigns the main counter *)
(* this is a comment expressed

ICS Triplex ISaGRAF Inc. B-183

Language Reference

on two lines *)
¢ := counter (* you can put comments anywhere *) + base_value + 1,

Interleave comments cannot be used. This means that the "(*" characters cannot be used
within a comment.

Warning: The IL language only accepts comments as the last component of an instruction line.

B.2.5 Defined words

The ISaGRAF system allows the re-definition of constant expressions, true and false Boolean
expressions, keywords or complex ST expressions. To achieve this, an identifier name has to
be given to the corresponding expression. For example:

YES is TRUE
Pl is 3.14159
OK is (auto mode AND NOT (alarm))

When such equivalence is defined, its identifier can be used anywhere in a ST program to
replace the attached expression. This is an example of ST programming using defines:

If OK Then
angle :=PI/2.0;
is done := YES;
Endive;

Defined words can be LOCAL to one program, GLOBAL, or COMMON.

Local defined words can be used by only one program.

Global defined words can be used in any program of the project.

Common defined words can be used in any program of any project.

Note that common defined can be stored separately with the Archive manager.

Warning: When the same identifier is defined twice with different ST equivalencies, the last
defined expression is used. For example:

Define: OPEN is FALSE
OPEN is TRUE
means: OPEN is TRUE

Naming defined words must conform to following rules:

- name cannot exceed 16 characters

- first character must be a letter

- following characters can be letters, digits or underscore ('_") character

Warning: A defined word can not use a defined word in its definition, for example, you can not
have:

Pl is 3.14159
P12 is P12

write the complete equivalence using constants or variables and operations:
P12 is 6.28318

B-184 ICS Triplex ISaGRAF Inc.

Language Reference

B.3 SFC language

Sequential Function Chart (SFC) is a graphic language used to describe sequential
operations. The process is represented as a set of well-defined steps, linked by transitions.
A Boolean condition is attached to each transition. Actions within the steps are detailed by
using other languages (ST, IL, LD and FDB).

B.3.1 SFC chart main format

A SFC program is a graphic set of steps and transitions, linked together by oriented links.
Multiple connection links are used to represent divergences and convergences. Some parts of
the complete program may be separated and represented in the main chart by a single
symbol, called macro steps. The basic graphic rules of the SFC are:

- A step cannot be followed by another step

- A transition cannot be followed by another transition

B.3.2 SFC basic components

The basic components (graphic symbols) of the SFC language are: steps and initial steps,
transitions, oriented links, and jumps to a step.

B.3.2.1 Steps and initial steps

A step is represented by a single square. Each step is referenced by a number, written in the
step square symbol. A main description of the step is written in a rectangle linked to the step
symbol. This description is a free comment (not part of the programming language). The
above information is called the Level 1 of the step:

Reference number

/_ Comment
| 102 |—|Start motor 1 |
At run time, a token indicates that the step is active:
Active step: Inactive step:
102 [—Start motor 1 214 —Weighing

ICS Triplex ISaGRAF Inc. B-185

Language Reference

The initial situation of a SFC program is expressed with initial steps. An initial step has a
double-bordered graphic symbol. A token is automatically placed in each initial step when the
program is started.

Initial step:

—{Start motor 1

A SFC program must contain at least one initial step.

These are the attributes of a step. Such fields may be used in any of the other languages:
GSNNN.X.oieiiiieiieeieens activity of the step (Boolean value)

GSNNN.t e, activation duration of the step (time value)

(where nnn is the reference number of the step)

B.3.2.2 Transitions

A small horizontal bar that crosses the connection link represents transitions. A number,
written next to the transition symbol references each transition. A main description of the
transition is written on the right side of the transition symbol. This description is a free
comment (not part of the programming language). The above information is called the Level 1

of the transition:
Reference number
Commem

102 We|gh|ng command

[Q

Single lines are used to link steps and transitions. These are oriented links. When the
orientation is not explicitly given, the link is oriented from the top to the bottom.

B.3.2.3 Oriented links

Explicit orientation
from transition 11

to setp 100 —\

100

Implicit orientation
T 10 from step 100 to

transition 10
]

B-186 ICS Triplex ISaGRAF Inc.

Language Reference

B.3.2.4 Jump to a step

Jump symbols may be used to indicate a connection link from a transition to a step, without
having to draw the connection line. The jump symbol must be referenced with the number of
the destination step:

w/_

102

Jump to step 102

A jump symbol cannot be used to represent a link from a step to a transition. Example of
jumps - the following charts are equivalent:

FE ®E

B.3.3 Divergences and convergences

Divergences are multiple connection links from one SFC symbol (step or transition) to many
other SFC symbols. Convergences are multiple connection links from more than one SFC
symbols to one other symbol. Divergences and convergences can be single or double.

B.3.3.1 single divergences

A single divergence is a multiple link from one step to many transitions. It allows the active
token to pass into one of a number of branches. A single convergence is a multiple link from
many transitions to the same step. A single convergence is generally used to group the SFC
branches, which were started on a single divergence. Single horizontal lines represent single
divergences and convergences.

ICS Triplex ISaGRAF Inc. B-187

Language Reference

|_'—_| /_ Single divergence

TF+F 7
+ ottt

_ Single convergence

Warning: The conditions attached to the different transitions at the beginning of a single
divergence are not implicitly exclusive. The exclusivity has to be explicitly detailed in the
conditions of the transitions to ensure that only one token progresses in one branch of the
divergence at run time. Below is an example of single divergence and convergence:

(* SFC program with single divergence and convergence *)
4:

Run & not Error L Error
101

| Savoorvi] o Wan |

+ M1 started | Acknowledge
2 102

3] i

timer > t#3s

3
g
+ M1 stopped

4

\

\
N2
1

B.3.3.2 Double divergences

A double divergence is a multiple link from one transition to many steps. It corresponds to
parallel operations of the process. A double convergence is a multiple link from many steps to
the same transition. A double convergence is generally used to group the SFC branches
started on a double divergence. Double horizontal lines represent double divergences and
convergences.

B-188 ICS Triplex ISaGRAF Inc.

Language Reference

+ /_ Double divergence

_ Double convergence

Example of double divergence and convergence:

(* SFC program with double divergence and convergence *)

Initialize
Rui

L n
1
1
2]{ Processl ‘ # Process2
| End of Process 1 + End of Process 2
2 101
E,]#Wait for process 2 ‘ #Wait for process 2
1
| true
3
1

B.3.4 Macro steps

A macro step is a unique representation of a unique group of steps and transitions. The body
of the macro step is described separately, elsewhere in the same SFC program. It appears as
a single symbol in the main SFC chart. This is the symbol used for a macro step:

Reference number

Comment

102 Process A

ICS Triplex ISaGRAF Inc. B-189

Language Reference

The reference number written in the macro step symbol is the reference number of the first
step in the body of the macro step. The macro step body must begin with a beginning step
and terminate with an ending step. The chart must be self-contained. A beginning step has no
upper link (no backward transition). An ending step has no lower link (no forward transition). A
macro step symbol may be put in the body of another macro step.

Warning: Because macro step is a unique set of steps and transitions, the same macro step
cannot be used more than once in a SFC program.

Example of macro step:
(* SFC program with macro step *)
(* Main chart *) (* Body of the macro step *)

Initialize ‘ Fill WUnit ‘

+ unit full

Error _|_ Run¬ Error mwelgh ‘
101

1
2]_‘Alarm ‘En Weighing ‘ weighing done
L 202

L Ak | true . Empty WUnit ‘

2 102 ‘
+ unit empty
1203

Store weight ‘
1

B.3.5 Actions within the steps

The level 2 of a SFC step is the detailed description of the actions executed during the step
activity. Using SFC literal features and other languages such as Structured Text (ST) makes
this description. The basic types of actions are:

- Boolean actions

- Pulse actions programmed in ST

- Non-stored actions programmed in ST

- SFC actions

Several actions (with same or different types) can be described in the same step. The special
features that enable the use of any of the other languages are:

- Calling sub-programs

- Instruction List (IL) language convention

B.3.5.1 Boolean actions

Boolean actions assign a Boolean variable with the activity of the step. The Boolean variable
can be an output or an internal. It is assigned each time the step activity starts or stops. This is
the syntax of the basic Boolean actions:

<boolean_variable> (N) ; assigns the step activity signal to the variable
<boolean_variable> ; same effect (N attribute is optional)

B-190 ICS Triplex ISaGRAF Inc.

Language Reference

/ <boolean_variable>; assigns the negation of the step activity signal to
the variable

Other features are available to set or reset a Boolean variable, when the step becomes active.
This is the syntax of set and reset Boolean actions:

<boolean_variable> (S) ; sets the variable to TRUE when the step activity
signal becomes TRUE
<boolean_variable> (R) ; resets the variable to FALSE when the step

activity signal becomes TRUE

The Boolean variable must be an OUTPUT or an INTERNAL. The following SFC programming
leads to the following behavior:

| GS10.X ,—|

10 - (step activity)
—Boolean actions

| Bdirect

Bdirect(N) ;

/Binvert ; Binvert

Bset(S) ;
Breset(R) ; Bset

Breset _|

Example of Boolean actions:

(* SFC program using BOOLEAN actions *)

4|ed1(R); led4(S); group12(R);

4Ied1 (N); group12 (S);

% GS2.t > thls;
4|ed2;

% GS3.t > tH2s;
4Ied3; groupl12 (R);

#Z GS4.t > t#ls;
NV
2

B.3.5.2 Pulse actions

A pulse action is a list of ST or IL instructions, which are executed only once at the activation
of the step. Instructions are written according to the following SFC syntax:

ACTION (P) :

ICS Triplex ISaGRAF Inc. B-191

Language Reference

(* ST statements *)
END_ACTION ;

The following shows the results of a pulse action:

Step activity J |_| |_

Execution I I

Example of pulse action:

Action (P):
nb_edge := 0;
End_action;

+ Cmd;
14
—Action P);

nb_edge := nb_edge + 1;
End_action;

B.3.5.3 Non-stored actions

A non-stored (normal) action is a list of ST or IL instructions, which are executed at each
cycle during the whole active period of the step. Instructions are written according to the
following SFC syntax:
ACTION (N):
(* ST statements *)
END_ACTION ;

The following is the results of a non-stored action:
Step activity J |_
Execution IIIIIIIII IIII

\j

Example of non-stored action:

B-192 ICS Triplex ISaGRAF Inc.

Language Reference

—IAction (P):

nb_edge := 0;
End_action;

cmd;

jijction (N):

If (nb_egde < 10) then
nb_edge := nb_edge + 1;
End_if;
End_action;

B.3.5.4 SFC actions

A SFC action is a child SFC sequence, started or killed according to the change of the step
activity signal. A SFC action can have the N (Non stored), S (Set), or R (Reset) qualifier. This
is the syntax of the basic SFC actions:

<child_prog> (N); starts the child sequence when the step becomes active, and
kills the child sequence when the step becomes inactive

<child_prog>; same effect (N attribute is optional)

<child_prog> (S); starts the child sequence when the step becomes active.
Nothing is done when the step becomes inactive

<child_prog> (R); kills the child sequence when the step becomes active. Nothing

is done when the step becomes inactive

The SFC sequence specified as an action must be a child SFC program of the program
currently being edited. Note that using the S (Set) or R (Reset) qualifiers for a SFC action has
exactly the same effect as the GSTART and GKILL statements, programmed in a ST pulse
action.

Below is an example of a SFC action. The main SFC program is named Father. It has two
SFC children, called SegMIx and SeqPump. The SFC programming of the father SFC
program is:

(* SFC program using SFC actions *)

ICS Triplex ISaGRAF Inc. B-193

Language Reference

| Start;
1

[2 SeqMix (N); 101]|seaPump (S);
| Full;
1101
102|—[seqPump (R);

]

B.3.5.5 Calling function and function blocks from an action

Sub-programs, functions or function blocks (written in ST, IL, LD or FBD language) or "C"
functions and "C" function blocks, can be directly called from a SFC action block, based on the
following syntax:

For sub-programs, functions and "C" functions:
ACTION (P) :
result :=sub_program () ;
END_ACTION;

or

ACTION (N) :
result :=sub_program () ;
END_ACTION,;

For function blocks in "C" or in ST, IL, LD, FBD:
ACTION (P) :
Fbinst(in1, in2);
resultl := Fbinst.outl;
result2 := Fbinst.out2;
END_ACTION;

or

ACTION (N) :
Fbinst(in1, in2);
resultl := Fbinst.outl;
result2 := Fbinst.out2;
END_ACTION,;

Detailed syntax can be found in the ST language section.
Example of a sub-program call in action blocks:

B-194 ICS Triplex ISaGRAF Inc.

Language Reference

(* SFC program with a sub-program call in an action block *)

—Action (P):

init := SPInit ();
End_action;

Init = OK;
B.3.5.6 IL convention

Instruction List (IL) programming may be directly entered in a SFC action block, based on the
following syntax:

ACTION (P) : (*or N *)
#info=IL

<instruction>

<instruction>

#endinfo
END_ACTION;

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are
case sensitive. Space or tab characters cannot be inserted into, after or before the keywords.
Below is an example of an IL program in an action block:

(* SFC program with an IL sequence in an action block *)

—|Action (P):

#info=IL
‘ LD False
ST Ledl
ST Led2
#endinfo
End_action;

B.3.6 Conditions attached to transitions

At each transition, a Boolean expression is attached that conditions the clearing of the
transition. The condition is usually expressed with ST language or using the LD language
(Quick LD editor). This is the Level 2 of the transition. Other structures may, however, be
used:

- ST language convention

- LD language convention

- IL language convention

- Calling function from a transition

Warning: When no expression is attached to the transition, the default condition is TRUE.

ICS Triplex ISaGRAF Inc. B-195

Language Reference

B.3.6.1 ST convention

The Structured Text (ST) language can be used to describe the condition attached to a
transition. The complete expression must have Boolean type and must be terminated by a
semicolon, according to the following syntax:

< boolean_expression >;
The expression may be a TRUE or FALSE constant expression, a single input or an internal
Boolean variable, or a combination of variables that leads to a Boolean value. Below is an

example of ST programming for transitions:

(* SFC program with ST programming for transitions *)

+ Run & not Error;

B.3.6.2 LD convention

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The diagram is composed of only one rung with one coil. The coil value represents
the transition value. Below is an example of LD programming for transitions:

Run Error
B.3.6.3 IL convention

Instruction List (IL) programming may be directly used to describe a SFC transition, according
to the following syntax:

#info=IL
<instruction>
<instruction>

#endinfo
The value contained by the current result (IL register) at the end of the IL sequence causes
the resulting of the condition to be attached to the transition:

current result =0 > condition is FALSE
current result <>0 > condition is TRUE

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are
case sensitive. Space or tab characters cannot be inserted into, after or before the keywords.
Below is an example of IL programming for transitions:

B-196 ICS Triplex ISaGRAF Inc.

Language Reference

(* SFC program with an IL program for transitions *)

&N Error
#endinfo

B.3.6.4 Calling functions from a transition

Any sub-program or a function (written in FBD, LD, ST or IL language), or a "C" function can
be called to evaluate the condition attached to a transition, according to the following syntax:

<sub_program > ();

The value returned by the sub-program or the function must be Boolean and yields the
resulting condition:

return value = FALSE > condition is FALSE
return value = TRUE 2> condition is TRUE

Example of a sub-program called in a transition:

(* SFC program with sub-program call for transitions *)

% EvalCond ();

B.3.7 SFC dynamic rules

The five dynamic rules of the SFC language are:

B2 initial situation
The initial situation is characterised by the initial steps, which are, by definition, in
the active state at the beginning of the operation. At least one initial step must be
present in each SFC program.

= Clearing of a transition
A transition is either enabled or disabled. It is said to be enabled when all
immediately preceding steps linked to its corresponding transition symbol are active,
otherwise it is disabled. A transition cannot be cleared unless:
- it is enabled, and
- the associated transition condition is true.

= Changing of state of active steps
The clearing of a transition simultaneously leads to the active state of the
immediately following steps and to the inactive state of the immediately preceding
steps.

ICS Triplex ISaGRAF Inc. B-197

Language Reference

[E=1 simultaneous clearing of transitions
Double lines may be used to indicate transitions, which have to be cleared
simultaneously. If such transitions are shown separately, the activity state of
preceding steps (GSnnn.x) can be used to express their conditions.

[E= simultaneous activation and deactivation of a step
If, during operation, a step is simultaneously activated and deactivated, priority is
given to the activation.

B.3.8 SFC program hierarchy

The ISaGRAF system enables the description of the vertical structure of SFC programs. SFC
programs are organised in a hierarchy tree. Each SFC program can control (start, kill...) other
SFC programs. Such programs are called children of the SFC program, which controls them.
SFC programs are linked together into a main hierarchy tree, using a "father - child" relation:

FATHER program
CHILD program

The basic rules implied by the hierarchy structure are:

- SFC programs, which have no father, are called "main" SFC programs

- Main SFC programs are activated by the system when the application starts
- A program can have several child programs

- A child of a program cannot have more than one father

- Its father can only control a child program

- A program cannot control the children of one of its own children

The basic actions that a father SFC program can take to control its child program are:

Start (GSTART) Starts the child program: activates each of its initial steps.
Children of this child program are not automatically started.

Kill (GKILL) Kills the child program by deactivating each of its active steps. All
the children of the child program are also killed.

Freeze (GFREEZE) Suspends the execution of the program (deactivates actions

of each of the active steps and suspend transition calculation), and
memorises the status of the program steps so the program can be
restarted. All the children of the child program are also frozen.

Restart (GRST) Restarts a frozen SFC program by reactivating all the suspended
steps. Children of the program are not automatically restarted.

Get status (GSTATUS) Gets the current status (active, inactive or frozen) of a child
program.

B-198 ICS Triplex ISaGRAF Inc.

Language Reference

B.4 Flow Chart language

Flow Chart (FC) is a graphic language used to describe sequential operations. A Flow Chart
diagram is composed of Actions and Tests. Between Actions and test are oriented links
representing data flow. Multiple connection links are used to represents divergences and
convergences. Actions and Tests can be described with ST, LD or IL languages. Functions
and Function blocks of any language (except SFC) can be called from actions and tests. A
Flow Chart program can call another Flow Chart program. The called FC program is a sub-
program of the calling FC program.

B.4.1 FC components

Below are graphic components of the Flow Chart language:

= Beginning of FC chart

A "begin" symbol must appear at the beginning of a Flow Chart program. It is unique and
cannot be omitted. It represents the initial state of the chart when it is activated. Below is the

drawing of a "begin" symbol:
(Begin]

The "Begin" symbol always has a connection (on the bottom) to the other objects of the chart.
A flow chart is not valid if no connection is drawn from "Begin" to another object.

- Ending of FC chart

An "end" symbol must appear at the end of a Flow Chart program. It is unique and cannot be
omitted. It is possible that no connection is drawn to the "End" symbol (always looping chart),
but "End" symbol is still drawn anyway at the bottom of the chart. It represents the final state of
the chart, when its execution has been completed. Below is the drawing of an "end" symbol:

e)

The "End" symbol generally has a connection (on the top) to the other objects of the chart. A
flow chart may have no connection to the "End" object (always looping chart). The "End" object
is still visible at the bottom of the chart in this case.

= FC flow links

A flow link is a line that represents a flow between two points of the diagram. An arrow always
terminates a link. Below is the drawing of a flow link:

ICS Triplex ISaGRAF Inc. B-199

Language Reference

Two links cannot start from the same source connection point.

= FC actions

An action symbol represents actions to be performed. A number and a name identify an
action. Below is the drawing of an "action" symbol:

nn: Name

Two different objects of the same chart cannot have the same name or logical number.
Programming language for an action can be ST, LD or IL. An action is always connected with
links, one arriving to it, one starting from it.

= FC conditions

A condition represents a Boolean test. A number and a name identify a condition. According
to the evaluation of attached ST, LD or IL expression, the flow is directed to "YES" or "NO"
path. Below are the possible drawings for a condition symbol:

YES YES

YES YES

ZE
o

Two different objects of the same chart cannot have the same name or logical number. The
programming of a test is either

- an expression in ST, or

- a single rung in LD, with no symbol attached to the unique coil, or

- several instructions in IL. The IL register (or current result) is used to evaluate the condition.

When programmed in ST text, a semicolon may optionally follow the expression. When
programmed in LD, the unique coil represents the condition value. A condition equal to:

- 0 or FALSE directs the flow to NO

- 1 or TRUE directs the flow to YES

A test is always connected with an arriving link, and both forward connections must be
defined.

B-200 ICS Triplex ISaGRAF Inc.

Language Reference

= FC sub-program

The system enables the description of the vertical structure of FC programs. FC programs are
organised in a hierarchy tree. Each FC program can call other FC programs. Such a program
is called a child program of the FC program, which calls them. FC programs, which call FC
sub-programs, are called father program. FC programs are linked together into a main
hierarchy tree, using a "father - child" relation:

FATHER program
CHILD program

A sub-program symbol in a Flow Chart represents a call to a Flow Chart sub-program.
Execution of the calling FC program is suspended till the sub-program execution is complete.
A number and a name, as other programs, functions or function blocks identify a Flow Chart
sub-program. Below is the drawing of a "sub-program call" symbol:

nn: SpName

Two different objects of the same chart cannot have the same logical number. The basic rules
implied by the FC hierarchy structure are:

- FC programs, which have no father, are called main FC programs.

- Main FC programs are activated by the system when the application starts

- A program can have several child programs

- A child of a program cannot have more than one father

- Only its father can call a child program

- A program cannot call the children of one of its own children

The same sub-program may appear several times in the father chart. A Flow Chart sub-
program call represents the complete execution of the sub chart. The father chart execution is
suspended during the child chart is performed. The sub-program calling blocks must follow the
same connection rules as the ones defined for action.

= FC 1/0 specific action

An 1/O specific action symbol represents actions to be performed. As other actions, a number
and a name identify an 1/O specific action. The same semantic is used on standard actions
and I/O specific actions. The aim of I/O specific actions is only to make the chart more
readable and to give focus on non-portable parts of the chart. Using 1/O specific actions is an
optional feature. Below is the drawing of an "I/O specific action" symbol:

nn: Name \

I/0 specific blocks have exactly the same behavior as standard actions. This covers their
properties, ST, LD or IL programming, and connection rules.

ICS Triplex ISaGRAF Inc. B-201

Language Reference

- FC connectors

Connectors are used to represent a link between two points of the diagram without drawing it.
A connector is represented as a circle and is connected to the source of the flow. The drawing
of the connector is completed, on the appropriate side (depending on the direction of the data
flow), by the identification of the target point (generally the name of the target symbol). Below
is the standard drawing of a connector:

% nn: Name

A connector always targets a defined Flow Chart symbol. Its logical number identifies the
destination symbol.

= FC comments

A comment block contains text that has no sense for the semantic of the chart. It can be
inserted anywhere on an unused space of the Flow Chart document window, and is used to
document the program. Below is the drawing of a "comment" symbol:

be on several lines...

comment text can j

B.4.2 FC complex structures

This section shows complex structure examples that can be defined in a Flow Chart diagram.
Such structures are combinations of basic objects linked together.

1]

Test IF/ THEN / ELSE
YES
@ @ (1) place for "THEN" actions to be inserted
(2) place for "ELSE" actions to be inserted
@ REPEAT / UNTIL
Tn;at N (3) place for repeated actions to be inserted
YES

B-202 ICS Triplex ISaGRAF Inc.

Language Reference

-

WHILE / DO

Test L]

YES
@

(3) place for repeated actions to be inserted

B.4.3 FC dynamic behavior

The execution of a Flow Chart diagram can be explained as follows:

- The Begin symbol takes one target cycle

- The End symbol takes one target cycle and ends the execution of the chart. After this symbol
is reached, no more actions of the chart are executed.

- The flow is broken each time an item (action, decision) is encountered that has already been
reached in the same cycle. In such a case the flow will continue on the next cycle.

Note: Contrary to SFC, an action is not a stable state. There is no repetition of instructions
while the action symbol is highlighted.

B.4.4 FC checking

Apart of attached ST, LD or IL programming, some other syntactic rules apply to flow chart
itself. Below is the list of main rules:

- All "connection" points of all symbols must be wired. (connection to "End" symbol may be
omitted)

- All symbols must be linked together (no isolated part should appear)

- All connectors should have valid destination

Other minor syntax errors can be reported:
- Empty actions (no programming) are considered as steps during run time scheduling
- Empty tests (no programming) are considered as "always true"

ICS Triplex ISaGRAF Inc. B-203

Language Reference

B.5 FBD language

The Functional Block Diagram (FBD) is a graphic language. It allows the programmer to
build complex procedures by taking existing functions from the 1SaGRAF library and wiring
them together in the graphic diagram area.

B.5.1 FBD diagram main format

FBD diagram describes a function between input variables and output variables. A function
is described as a set of elementary function blocks. Input and output variables are
connected to blocks by connection lines. An output of a function block may also be

connected to an input of another block.
Function

Input Outputs

An entire function operated by an FBD program is built with standard elementary function
blocks from the ISaGRAF library. Each function block has a fixed number of input connection
points and a fixed number of output connection points. A function block is represented by a
single rectangle. The inputs are connected on its left border. The outputs are connected on
its right border. An elementary function block performs a single function between its inputs
and its outputs. The name of the function to be performed by the block is written in its
rectangle symbol. Each input or output of a block has a well-defined type.
/_ Name of the function

-/

Input & — Outputs

Input variables of an FBD program must be connected to input connection points of function
blocks. The type of each variable must be the same as the type expected for the associated
input. Input for FBD diagram can be a constant expression, any internal or input variable, or
an output variable.

Output variables of an FBD program must be connected to output connection points of
function blocks. The type of each variable must be the same as the type expected for the
associated block output. An Output for FBD diagram can be any internal or output variable,
or the name of the program (for sub-programs only). When an output is the name of the
currently edited sub-program, it represents the assignment of the return value for the sub-
program (returned to the calling program).

Input and output variables, inputs and outputs of the function blocks are wired together with
connection lines. Single lines may be used to connect two logical points of the diagram:

B-204 ICS Triplex ISaGRAF Inc.

Language Reference

- An input variable and an input of a function block
- An output of a function block and an input of another block
- An output of a function block and an output variable

The connection is oriented, meaning that the line carries associated data from the left
extremity to the right extremity. The left and right extremities of the connection line must be of
the same type.

Multiple right connection can be used to broadcast an information from its left extremity to
each of its right extremities. All the extremities of the connection must be of the same type.

B.5.2 RETURN statement

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a Boolean
output connection point of a function block. The RETURN statement represents a conditional
end of the program: if the output of the box connected to the statement has the Boolean value
TRUE, the end (remaining part) of the diagram is not executed.

(* Example of an FBD program using RETURN statement *)

>=1
[_auto_mode]
alarm — RETURN

bil0 — >=1
bi23] —
x_cmd —| bo67

(* ST equivalence: *)

If auto_mode OR alarm Then
Return;

End_if;

bo67 := (bil0 AND bi23) OR x_cmd;

B.5.3 Jumps and labels

Labels and jumps are used to control the execution of the diagram. No other object may be
connected on the right of a jump or label symbol. The following notations are used:

SSLAB e jump to a label (label name is "LAB")
LAB: .o definition of a label (label name is "LAB")

If the connection line on the left of the jump symbol has the Boolean state TRUE, the
execution of the program directly jumps after the corresponding label symbol.

(* Example of an FBD program using labels and jumps *)

ICS Triplex ISaGRAF Inc. B-205

Language Reference

&
manual —
b1l — —>>NOMODIF
>=1
inputl —
input2 — = result
NOMODIF:
>=1
result —
valid — 4 cmd10

(* IL Equivalence: *)

Id manual

and bl

jmpc NOMODIF

Id inputl

or input2

st result
NOMODIF: Id result

or valid

st cmd10

B.5.4 Boolean negation

A single connection line with its right extremity connected to an input of a function block can be
terminated by a Boolean negation. A small circle represents the negation. When a Boolean
negation is used, the left and right extremities of the connection line must have the BOOLEAN

type.

(* Example of an FBD program using a Boolean negation *)

&
[inputl |
input2 — outputl

(* ST equivalence: *)
outputl := inputl AND NOT (input2);

B.5.5 Calling function or function blocks from the FBD

The FBD language enables the calling of sub-programs, functions or function blocks. A sub-
program, or function or function block is represented by a function box. The name written in
the box is the name of the sub-program or function or function blocks.

In case of a sub-program or a function, the return value is the only output of the function box.
A function block can have more than one output.

B-206 ICS Triplex ISaGRAF Inc.

Language Reference

(* Example of an FBD program using SUB PROGRAM block *)

Weighing [_net_weight]
[_mode
delta I— detia net.y =

[0~ o RETURN

tare_weight - —] weight

(* ST Equivalence *)

net_weight := Weighing (mode, delta); (* call sub-program *)
If (net_weight = 0) Then Return; End_if;

weight := net_weight + tare_weight;

ICS Triplex ISaGRAF Inc. B-207

Language Reference

B.6 LD language

Ladder Diagram (LD) is a graphic representation of Boolean equations, combining contacts
(input arguments) with coils (output results). The LD language enables the description of tests
and modifications of Boolean data by placing graphic symbols into the program chart. LD
graphic symbols are organized within the chart exactly as an electric contact diagram. LD
diagrams are connected on the left side and on the right side to vertical power rails. These
are basic graphic components of an LD diagram:

| ——————————————————————————— Left vertical power rail

| --------------------------- Right vertical power rail

——————————————————————————— Horizontal connection line

--------------------------- Vertical connection line

i ——————————————————————————— Multiple connection lines (all connected together)

1
1

Contact associated with a variable

#

Coil associated to an output or to an internal variable

B.6.1 Power rails and connection lines

AN LD diagram is limited on the left and right side by vertical lines, named left power rail and
right power rail respectively.

Left power rail
Right power rail
—

— A

LD diagram graphic symbols are connected to power rails or to other symbols by connection
lines. Connection lines are horizontal or vertical.

B-208 ICS Triplex ISaGRAF Inc.

Language Reference

Horizontal connection lines

e]
Vertical / \— Vertical connection

connection line with OR meaning

Each line segment has a Boolean state FALSE or TRUE. The Boolean state is the same for all
the segments directly linked together. Any horizontal line connected to the left vertical power
rail has the TRUE state.

B.6.2 Multiple connection

The Boolean state given to a single horizontal connection line is the same on the left and on
the right extremities of the line. Combining horizontal and vertical connection lines enables the
building of multiple connections. The Boolean state of the extremities of a multiple
connection follows logic rules.

A multiple connection on the left combines more than one horizontal lines connected on
the left side of a vertical line, and one line connected on its right side. The Boolean state of
the right extremity is the LOGICAL OR between all the left extremities.

(* Example of multiple LEFT connection *)

(* right extremity state is (v1 OR v2 OR v3) *)

A multiple connection on the right combines one horizontal line connected on the left side
of a vertical line, and more than one line connected on its right side. The Boolean state of the
left extremity is propagated into each of the right extremities.

(* Example of multiple RIGHT connection *)
inpu‘tl out}g\utl

|
I 1
out?utz

(* ST equivalence: *)
outputl := inputl,;
output2 := inputl;

A multiple connection on the left and on the right combines more than one horizontal line
connected on the left side of a vertical line, and more than one line connected on its right
side. The Boolean state of each of the right extremities is the LOGICAL OR between all the
left extremities

(* Example of multiple LEFT and RIGHT connection *)

ICS Triplex ISaGRAF Inc. B-209

Language Reference

inputl outputl
™ o=
inpu}z output2
I
output3

(* ST Equivalence: *)

outputl := inputl OR input2;
output2 := inputl OR input2;
output3 := inputl OR input2;

B.6.3 Basic LD contacts and coils

There are several symbols available for input contacts:
- Direct contact

- Inverted contact

- Contacts with edge detection

There are several symbols available for output coils:
- Direct coil

- Inverted coil

- SET coll

- RESET caoill

- Coils with edge detection

The name of the variable is written above any of these graphic symbols:

- Direct contact

A direct contact enables a Boolean operation between a connection line state and a
Boolean variable.

boo_variable

Left connection -/ ‘ ‘ X Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the value of the variable associated with the contact.

(* Example using DIRECT contacts *)
inputl input2 outputl

(* ST Equivalence: *)
outputl := inputl AND input2;

B-210 ICS Triplex ISaGRAF Inc.

Language Reference

- Inverted contact

An inverted contact enables a Boolean operation between a connection line state and the
Boolean negation of a Boolean variable.

boo_variable

“
_/ ‘ N Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the Boolean negation of the value of the variable
associated with the contact.

Left connection

(* Example using INVERTED contacts *)

inputl input2 outputl

(* ST Equivalence: *)
outputl := NOT (inputl) AND NOT (input2);

= Contact with rising edge detection

This contact (positive) enables a Boolean operation between a connection line state and
the rising edge of a Boolean variable.

boo_variable

‘ . Right connection

—~ | F

Left connection

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. It is reset to FALSE in all other cases.

(* Example using RISING EDGE contacts *)

inputl input2 outputl

H —p

(* ST Equivalence: *)
outputl := inputl AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

= Contact with falling edge detection

This contact (negative) enables a Boolean operation between a connection line state and
the falling edge of a Boolean variable.

ICS Triplex ISaGRAF Inc. B-211

Language Reference

boo_variable

N
Left connection -/ ‘ ‘ x Right connection

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE
to FALSE. Itis reset to FALSE in all other cases.

(* Example using FALLING EDGE contacts *)

inputl input2 outputl

H N

(* ST Equivalence: *)
outputl := inputl AND (NOT (input2) AND input2prev);
(* input2prev is the value of input2 at the previous cycle *)

- Direct coil
Direct coils enable a Boolean output of a connection line Boolean state.
boo_variable

()
-/ U \Rightconnection

Left connection

The associated variable is assigned with the Boolean state of the left connection. The state
of the left connection is propagated into the right connection. The right connection may be
connected to the right vertical power rail.

The associated Boolean variable must be OUTPUT or INTERNAL.

The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using DIRECT coils *)

inputl outputl
npu 4y

[
OUt}_J\UtZ

(* ST Equivalence: *)
outputl := inputl;
output2 := inputl;

- Inverted coil

Inverted coils enable a Boolean output according to the Boolean negation of a connection
line state.

B-212 ICS Triplex ISaGRAF Inc.

Language Reference

boo_variable

-/ @ \Rightconnection

Left connection

The associated variable is assigned with the Boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated Boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using INVERTED coils *)

inpu‘tl outputl
\ 1

out);)\utz

(* ST Equivalence: *)
outputl := NOT (inputl);
output2 := inputl;

- SET coil
"Set" coils enable a Boolean output of a connection line Boolean state.
boo_variable

S
Left connection e U A Right connection

The associated variable is SET TO TRUE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until a "RESET" coil makes an inverse
order. The state of the left connection is propagated into the right connection. Right connection
may be connected to the right vertical power rail.

The associated Boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

inpuﬁl outgujl
inpuﬁz outEutiL

(* ST Equivalence: *)
IF inputl THEN

outputl := TRUE;
END_IF;

ICS Triplex ISaGRAF Inc. B-213

Language Reference

IF input2 THEN
outputl := FALSE;
END_IF;

- RESET coil

"Reset" coils enable Boolean output of a connection line Boolean state.

boo_variable

R
Left connection e U \ Right connection

The associated variable is RESET TO FALSE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until a "SET" coil makes an inverse
order. The state of the left connection is propagated into the right connection. Right connection
may be connected to the right vertical power rail.

The associated Boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

inputl outgu}ﬂ
innuE outEutiL

(* ST Equivalence: *)

IF inputl THEN
outputl := TRUE;

END_IF;

IF input2 THEN
outputl := FALSE;

END_IF;

= Coil with rising edge detection

"Positive" coils enable Boolean output of a connection line Boolean state. This type of coils
is only available using the Quick ladder editor.

boo_variable

()
e U \Rightconnection

Left connection

The associated variable is set to TRUE when the Boolean state of the left connection rises
from FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the
left connection is propagated into the right connection. Right connection may be connected to
the right vertical power rail.

The associated Boolean variable must be OUTPUT or INTERNAL.

B-214 ICS Triplex ISaGRAF Inc.

Language Reference

(* Example using a "Positive" coil *)

inputl outputl
b]

(* ST Equivalence: *)
IF (inputl and NOT(inputlprev)) THEN
outputl := TRUE;
ELSE
outputl := FALSE;
END_IF;
(* inputlprev is the value of inputl at the previous cycle *)

= Coil with falling edge detection

"Negative" coils enable Boolean output of a connection line Boolean state. This type of coils
is only available using the Quick ladder editor.

boo_variable

N
e U \Rightconnection

Left connection

The associated variable is set to TRUE when the Boolean state of the left connection falls
from TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the
left connection is propagated into the right connection. Right connection may be connected to
the right vertical power rail.

The associated Boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

inputl outputl
e

(* ST Equivalence: *)
IF (NOT(inputl) and inputlprev) THEN
outputl := TRUE;
ELSE
outputl := FALSE;
END_IF;
(* inputlprev is the value of inputl at the previous cycle *)

B.6.4 RETURN statement

The RETURN label can be used as an output to represent a conditional end of the program.
No connection can be put on the right of a RETURN symbol.

RETURN

ICS Triplex ISaGRAF Inc. B-215

Language Reference

If the left connection line has the TRUE Boolean state, the program ends without executing
the equations entered on the following lines of the diagram.
Note: When the LD program is a sub-program, its name has to be associated with an output
coil to set the return value (returned to the calling program).

(* Example using RETURN symbol *)

manual mode

inputl input2 result

input3

(* ST Equivalence: *)
If Not (manual_mod